Wiederholung: Terme, Termstrukturen und Gleichungen: Unterschied zwischen den Versionen
BiaMa (Diskussion | Beiträge) KKeine Bearbeitungszusammenfassung |
BiaMa (Diskussion | Beiträge) Keine Bearbeitungszusammenfassung |
||
Zeile 1: | Zeile 1: | ||
{{Box|Das weißt du schon über Terme, Termstrukturen und Gleichungen!|In diesem Kapitel findest du die wichtigsten Begriffe aus der dritten Klasse. Es dient zur Wiederholung und soll dein Wissen auffrischen. Anschließend folgen die ersten Aufgaben, die du zum | {{Box|Das weißt du schon über Terme, Termstrukturen und Gleichungen!|In diesem Kapitel findest du die wichtigsten Begriffe aus der dritten Klasse. Es dient zur Wiederholung und soll dein Wissen auffrischen. Anschließend folgen die ersten Aufgaben, die du zum Punktesammeln lösen kannst. |Kurzinfo | ||
}}{{Box|Merke|Wir erinnern uns, eine <b>Variable</b> ist eine beliebige Zahl und ein Term ist ein <b> sinnvoller mathematischer Rechenausdruck</b>. Terme können eingliedrig oder mehrgliedrig sein und du kannst sie miteinander addieren, subtrahieren und mulitiplizieren. Bei einer Division spricht man dann von <b>Bruchtermen</b>. | }}{{Box|Merke|Wir erinnern uns, eine <b>Variable</b> ist eine beliebige Zahl und ein Term ist ein <b> sinnvoller mathematischer Rechenausdruck</b>. Terme können eingliedrig oder mehrgliedrig sein und du kannst sie miteinander addieren, subtrahieren und mulitiplizieren. Bei einer Division spricht man dann von <b>Bruchtermen</b>. | ||
Version vom 28. März 2022, 18:53 Uhr
Wir erinnern uns, eine Variable ist eine beliebige Zahl und ein Term ist ein sinnvoller mathematischer Rechenausdruck. Terme können eingliedrig oder mehrgliedrig sein und du kannst sie miteinander addieren, subtrahieren und mulitiplizieren. Bei einer Division spricht man dann von Bruchtermen.
Jeder Term besitzt eine Grob- und eine Feinstruktur. Durch eine genaue Untersuchung des Terms kannst du diese Struktur erkennen.
Eine Gleichung stellt den Zusammenhang von Termen mittels Gleichtheitszeichen "=" dar. Formeln sind allgemein gültige Gleichungen.Subtrahiere x vom Dreifachen von y. | 3 ⋅ y - x | |
Multipliziere y mit der Hälfte von x. | y ⋅ (x:2) | (x:2) ⋅ y |
Verdopple die Differenz von x und y. | 2 ⋅ (x - y) | (x - y) ⋅ 2 |
Dividiere die Differenz von y und x durch 2. | (y - x):2 | |
Subtrahiere die Hälfte von y von x. | x - y:2 | |
Addiere x zum Doppelten von y. | 2 ⋅ y + x | x + 2 ⋅ y |
Löse folgende Aufgabe zu den binomlischen Formeln.
Wenn du die Aufgabe richtig gelöst hast, dann darfst du die Punkte in deine Punktetabelle übertragen. Du bekommst 2 Punkte, wenn du 100 Prozent erreicht hast. Beachte, dass du bei dieser Aufgabe nur einen Versuch hast.
() (!) (!) (!)
() (!) () (!)
() (!) (!) (!)
(!) () (!) (!)
Denke an eine beliebige Zahl. Addiere 6 dazu und verdopple nun deine Zahl. Anschließend subtrahiere das doppelte deiner Zahl. Das Ergebnis ist 12. Wieso klappt das für jede Zahl?
Überlege mit deinem/deiner SitznachbarIn.