Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
K (Lösung in Übung 2 genauer beschrieben) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 19: | Zeile 19: | ||
Bereche folgende Wahrscheinlichkeiten!<br><br> | Bereche folgende Wahrscheinlichkeiten!<br><br> | ||
b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | ||
{{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Gib im Taschenrechner die Funktion binompdf(n,p,k)ein. | {{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Gib im Taschenrechner die Funktion binompdf(n,p,k)ein.<br> n die Anzahl der Versuche(Befragungen), p die Wahrscheinlichkeit für einen Treffer und k die Anzahl der Treffer. | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 31: | Zeile 31: | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
<math>P(X\leq680)=\sum_{i=0}^{680} B_{1000,0,71} (i) = 0,0206</math> | <math>P(X\leq680)=\sum_{i=0}^{680} B_{1000,0,71} (i) = 0,0206</math><br> | ||
In den Taschenrechner wurde zur Berechnung die Funktion binomcdf(1000, 0.71, 680) eingegeben.<br> | |||
Die Wahrscheinlichkeit, dass in der Stichprobe höchstens 680 der Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,06 % | Die Wahrscheinlichkeit, dass in der Stichprobe höchstens 680 der Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,06 % | ||
}} | }} | ||
d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1= P(mindestens k)=1 - P(höchstens k - 1)<br> | {{Lösung versteckt|1= Wahrscheinlichkeiten für mindetstens werden über die Gegenwahrscheinlichkeit berechnet: P(mindestens k)=1 - P(höchstens k - 1)<br> Die Wahrscheinlichkeit für höchstens kannst du wieder mit der Funktion binomcdf(n,p,k)berechnen. | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
<math>P(X\geq740)= 1-P(X\leq739)=0,0191</math><br> Die Wahrscheinlichkeit, dass in der Stichprobe mindestens 740 Menschen den Klimawandel als Bedrohung ansehen, beträgt 1,91 %. | <math>P(X\geq740)= 1-P(X\leq739)=0,0191</math><br> | ||
In den Taschenrechner berechnest du es wie folgt: 1- binomcdf(1000, 0.71, 739)<br> | |||
Die Wahrscheinlichkeit, dass in der Stichprobe mindestens 740 Menschen den Klimawandel als Bedrohung ansehen, beträgt 1,91 %. | |||
}} | }} | ||
Version vom 19. November 2019, 09:09 Uhr
Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man Bernoulli-Experiment. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine Bernoulli-Kette der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die Formel von Bernoulli () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt Binomialverteilung mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige Verteilungsfunktion, für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:
Vor allem der Umgang mit kumuliertern Wahrscheinlichkeiten und die grafische Anschauung der Binomialverteilung sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Es soll die Aussage "71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt.
a) Skizziere die zugehörige Binomialverteilung.
Bereche folgende Wahrscheinlichkeiten!
b) Das in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
Gib im Taschenrechner die Funktion binompdf(n,p,k)ein.
n die Anzahl der Versuche(Befragungen), p die Wahrscheinlichkeit für einen Treffer und k die Anzahl der Treffer.
.
In den Taschrenrechner wurde zur Berechnung folgende Funktion eingegeben binomcdf (1000, 0.71, 710).
c) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Zur Berechnung nutze in deinem Taschenrechner die Funktion binomcdf(n,p,k).
In den Taschenrechner wurde zur Berechnung die Funktion binomcdf(1000, 0.71, 680) eingegeben.
d) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Die Wahrscheinlichkeit für höchstens kannst du wieder mit der Funktion binomcdf(n,p,k)berechnen.
In den Taschenrechner berechnest du es wie folgt: 1- binomcdf(1000, 0.71, 739)
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!