Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 4: Zeile 4:
<div class="lueckentext-quiz">
<div class="lueckentext-quiz">


Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Ist so ein Zufallsexperiment jeweils unabhängig voneinader und wid n-mal wiederholt erhält man eine'''Bernoulli-Kette''' der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die '''Formel von Bernoulli''' (<math>P(X=k)=\tbinom{n}{k}\cdot p^k \cdot (1-p)^{n-k}</math>) berechnet werden. Die '''diskrete''' Wahrscheinlichkeitsverteilung für X heißt '''Binomialverteilung''' mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige '''Verteilungsfunktion''', für deren Wahrscheinlichkeit die Schreibweise <math>P(X\leq k)</math> üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet: <math>P(X\leq k)=\sum_{i=0}^k B_{n,p}(i)</math>
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Wird solch ein Experiment jeweils unabhängig voneinader, n-mal wiederholt erhält man eine'''Bernoulli-Kette''' der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die '''Formel von Bernoulli''' (<math>P(X=k)=\tbinom{n}{k}\cdot p^k \cdot (1-p)^{n-k}</math>) berechnet werden. Die '''diskrete''' Wahrscheinlichkeitsverteilung für X heißt '''Binomialverteilung''' mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige '''Verteilungsfunktion''', für deren Wahrscheinlichkeit die Schreibweise <math>P(X\leq k)</math> üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet: <math>P(X\leq k)=\sum_{i=0}^k B_{n,p}(i)</math>


</div>|3=Arbeitsmethode
</div>|3=Arbeitsmethode

Version vom 12. November 2019, 12:14 Uhr


Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.

Übung 1: Grundlagen der Binomialverteilung

Fülle den Lückentext aus!

Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man Bernoulli-Experiment. Wird solch ein Experiment jeweils unabhängig voneinader, n-mal wiederholt erhält man eineBernoulli-Kette der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die Formel von Bernoulli () berechnet werden. Die diskrete Wahrscheinlichkeitsverteilung für X heißt Binomialverteilung mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige Verteilungsfunktion, für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:

Vor allem der Umgang mit kumuliertern Wahrscheinlichkeiten sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.

Übung 2: Berechnung von Wahrscheinlichkeiten

Es soll die Aussage "71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt. Bereche folgende Wahrscheinlichkeiten!

a) Das in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.

Nutze die Formel von Bernoulli!
Nutze im Taschenrechner die Funktion binompdf(n,p,k)
.
Die Wahrscheinlichkeit, dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,78 %.

b) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.

Nutze die Formel für die kumulierte Wahrscheinlichkeit.
Zur Berechnung nutze in deinem Taschenrechner die Funktion binomcdf(n,p,k).

Die Wahrscheinlichkeit, dass in der Stichprobe höchstens 680 der Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,06 %

c) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.

P(mindestens k)=1 - P(höchstens k - 1)
Nutze in deinem Taschenrechner die Funktion binomcdf(n,p,k)

Die Wahrscheinlichkeit, dass in der Stichprobe mindestens 740 Menschen den Klimawandel als Bedrohung ansehen, beträgt 1,91 %.

Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!