Benutzer:Cloehner/Stochastik Einführungsphase NRW/Zufallsgrößen - Wahrscheinlichkeitsverteilungen - Erwartungswerte: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 64: Zeile 64:
{{Lösung versteckt|Nach 1000 Versuchen hat man im Schnitt ein Gewinn von rund -0,14 € (genauer Wert: -0,144 €) gemacht.|Kontrolllösung anzeigen|Kontrolllösung ausblenden}}
{{Lösung versteckt|Nach 1000 Versuchen hat man im Schnitt ein Gewinn von rund -0,14 € (genauer Wert: -0,144 €) gemacht.|Kontrolllösung anzeigen|Kontrolllösung ausblenden}}
}}
}}
{{Aufgaben|6|Häufig findet man zur berechnung der arithmetischen Mittels zwei verschiedene Formeln:
Variante 2, basierend auf den relativen Häufigkeiten <math>h(x_1), ..., h(x_k)</math>
<math>\bar x=x_1 \cdot h(x_1)+x_2 \cdot h(x_2)+ \cdots +x_{k-1} \cdot h(x_{k-1})+x_k \cdot h(x_k)=\sum_{i=1}^k x_i \cdot h(x_i)=\sum_{i=1}^k x_i \cdot h_i</math>}}

Version vom 26. April 2019, 20:26 Uhr


Übergreifende Aufgabe

Erstelle auf Basis der Ergebnisse aller Aufgaben dieser Seite ein Produkt, aus dem die Bedeutung der eingeführten Fachbegriffe sowie die Vorgehensweise zur Berechnung neu eingeführter Werte hervorgeht. Entscheide selbst, in welcher Form du die Inhalte aufbereiten möchtest (z.B. in Textform, als Sketchnote, als Präsentation, ...)

Du darfst diese Aufgabe alleine oder in einer Gruppe von maximal vier Personen bearbeiten.


Glücksrad zweifarbig.jpg

Klara bietet auf einem Straßenfest ein Glücksspiel an. Das abgebildete Glücksrad wird dreimal gedreht. Wird bei jeder Drehung ein graues Feld getroffen, so verliert man seinen Einsatz von 1,00 €. Wenn bei den drei Drehungen genau einmal ein rotes Feld getroffen wird, wird 1,50 € ausgezahlt, bei zweimal „rot” wird 2,50 € ausgezahlt und bei dreimal „rot” beträgt die Auszahlungssumme 5 €.


Die Wahrscheinlichkeiten der verschiedenen Gewinnsummen

Aufgabe 1
Stelle das dreimalige Drehen des Glücksrades in einem Baumdiagramm dar.


Aufgabe 2
Lege eine Tabelle an, in der du in der oberen Zeile die möglichen Gewinnsummen und darunter die Wahrscheinlichkeit, mit der die entsprechende Gewinnsumme erzielt wird, zusammenstellst. Du kannst dein Ergebnis überprüfen, indem du die Werte in die folgende Tabelle einträgst. Alle Werte, die nach einem Klick auf "Prüfen" stehen bleiben, sind korrekt.


Gewinnsumme: -1,00|-1() 0,50|0,5() 1,50|1,5() 4,00|4()
Wahrscheinlichkeit: 0,512|64/125() 0,384|48/125() 0,096|12/125() 0,008|1/125()


Aufgabe 3

Informiere dich über die Bedeutung der Begriffe diskrete Zufallsgröße und Wahrscheinlichkeitsverteilung.

Zur Wahrscheinlichkeitsverteilung wird in einigen Quellen auf die Wahrscheinlichkeits- und die Verteilungsfunktion eingegangen. Beide würden an dieser Stelle jedoch zu weit führen.

Erläutere, inwiefern dir auf dieser Seite bereits eine diskrete Zufallsgröße und eine Wahrscheinlichkeitsverteilung begegnet sind. Beachte mit Blick auf das übergreifende Produkt, welches du zu dieser Seite erstellen sollst insbesondere auch Formelzeichen und Schreibweisen wie , und .

Eine Erläuterung geht deutlich über eine reine Zuordung der Begriffe heraus. Die Bedeutung der beiden Begriffe soll in dieser Aufgabe exemplarisch verdeutlicht werden!


Handelt es sich um ein faires Spiel?

Natürlich kann man bei einem Glücksspiel nicht immer gewinnen. Dennoch lassen sich Kriterien definieren, anhand derer man entscheiden kann, ob das Spiel fair gestaltet ist.


Aufgabe 4
Formuliere Bedingungen, unter denen du ein Glücksspiel als fair bezeichnen würdest.


Aufgabe 5

Angenommen das Glücksspiel wird 1000-mal durchgeführt. Wie oft sind die verschiedenen Gewinnsummen dabei im Idealfall zu erwarten?

Berechne auf Basis der vorhergesagten absoluten Häufigkeiten das arithmetische Mittel der Gewinnsummen.

Nach dem Gesetz der großen Zahlen nähern sich die relativen Häufigkeiten der Ausgänge eines Glücksspiels bei sehr großer Versuchsanzahl immer weiter den theoretischen Wahrscheinlichkeiten an.
Nach 1000 Runden können als Schätzwert für die relativen Häufigkeiten der verschiedenen Gewinnsummen die Wahrscheinlichkeiten aus Aufgabe 2 verwendet werden. Berechne daraus die gesuchten absoluten Häufigkeiten.
Nach 1000 Versuchen hat man im Schnitt ein Gewinn von rund -0,14 € (genauer Wert: -0,144 €) gemacht.


Aufgabe 6

Häufig findet man zur berechnung der arithmetischen Mittels zwei verschiedene Formeln:

Variante 2, basierend auf den relativen Häufigkeiten