Zentrische Streckung/Abbildung durch zentrische Streckung/4.Station: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
Keine Bearbeitungszusammenfassung
Main>Leonie Porzelt
Keine Bearbeitungszusammenfassung
Zeile 10: Zeile 10:
'''Abbildungsvorschrift der zentrischen Streckung'''<br>
'''Abbildungsvorschrift der zentrischen Streckung'''<br>
Wenn eine Vergrößerung von einem Zentrum ausgeht, dann spricht man von einer '''zentrischen Streckung'''. <br>
Wenn eine Vergrößerung von einem Zentrum ausgeht, dann spricht man von einer '''zentrischen Streckung'''. <br>
Sie wird festgelegt durch Angabe eines '''Streckungszentrums Z''' und eines '''Streckungsfaktors k'''. (Kurz: )<br>
Sie wird festgelegt durch Angabe eines '''Streckungszentrums Z''' und eines '''Streckungsfaktors k'''. (Kurz: [[Bild:Porzelt_Pfeil-1.jpg]] )<br>
Der '''Urpunkt P''', der '''Bildpunkt P'''' und das Streckungszentrum Z liegen auf einer Geraden. <br>
Der '''Urpunkt P''', der '''Bildpunkt P'''' und das Streckungszentrum Z liegen auf einer Geraden. <br>
Es gilt: <span style="text-decoration: overline;">ZP'</span> = |k| ∙ <span style="text-decoration: overline;">ZP</span> <br>
Es gilt: <span style="text-decoration: overline;">ZP'</span> = |k| ∙ <span style="text-decoration: overline;">ZP</span> <br>

Version vom 3. Juli 2009, 20:36 Uhr


4. Station: Zusammenfassung

Hier siehst du alles, was du bisher herausgefunden hast zusammengefasst.
Schreibe dir diese Zusammenfassung in dein Heft.

Abbildungsvorschrift der zentrischen Streckung
Wenn eine Vergrößerung von einem Zentrum ausgeht, dann spricht man von einer zentrischen Streckung.
Sie wird festgelegt durch Angabe eines Streckungszentrums Z und eines Streckungsfaktors k. (Kurz: Porzelt Pfeil-1.jpg )
Der Urpunkt P, der Bildpunkt P' und das Streckungszentrum Z liegen auf einer Geraden.
Es gilt: ZP' = |k| ∙ ZP
Bei |k|>1 liegt eine Vergrößerung, bei 0<|k|<1 eine Verkleinerung vor.
Wenn k=1 ist liegt die Identität vor, bei k= -1 eine Spiegelung.
Für k>0 gilt: Urpunkt und Bildpunkt liegen auf der gleichen Seite von Z.
Für k<0 gilt: Urpunkt und Bildpunkt liegen auf verschiedenen Seiten von Z.