Integralrechnung/Aufgaben II: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Dickesen
Keine Bearbeitungszusammenfassung
Main>Dickesen
Keine Bearbeitungszusammenfassung
Zeile 36: Zeile 36:
<br>
<br>
{{Lösung versteckt|{{Lösung|
{{Lösung versteckt|{{Lösung|
# Es ergeben sich die Nullstellen 0, 1 und -1. Damit müssen zwei Integrale ausgewertet werden. Diese erstrecken sich von der ersten bis zur zweiten Nullstelle sowie von der zweiten bis zur dritten. Insgesamt ergibt sich der Wert für die Fläche aus den Beträgen der einzelnen Integrale zu <math>\frac{1}{2}</math>. Nach der Regel zur Intervalladditivität könnte auch ein einzelnes Integral von der niedrigsten bis zur höchsten Nullstelle betrachtet werden, wenn nach dem Wert des Integrals gefragt wäre. Jedoch ist nach der Fläche gefragt. Deshalb müssen die Beträge der Integrale einzeln betrachtet werden!!!
# Es ergeben sich die Nullstellen -1, 0 und 1. Damit müssen zwei Integrale ausgewertet werden. Diese erstrecken sich von der ersten bis zur zweiten Nullstelle sowie von der zweiten bis zur dritten. Insgesamt ergibt sich der Wert für die Fläche aus den Beträgen der einzelnen Integrale zu <math>\frac{1}{2}</math>. Nach der Regel zur Intervalladditivität könnte auch ein einzelnes Integral von der niedrigsten bis zur höchsten Nullstelle betrachtet werden, wenn nach dem Wert des Integrals gefragt wäre. Jedoch ist nach der Fläche gefragt. Deshalb müssen die Beträge der Integrale einzeln betrachtet werden!!! Vergleiche dazu den Wert des Integrals in denselben Grenzen, er ist 0.
# Nullstellen: <math>\frac{1}{2}\sqrt{3}</math> und <math>- \frac{1}{2}\sqrt{3}</math>. Der Flächeninhalt hat den Wert <math>2 \sqrt{3}</math>.
# Nullstellen: <math>\frac{1}{2}\sqrt{3}</math> und <math>- \frac{1}{2}\sqrt{3}</math>. Der Flächeninhalt hat den Wert <math>2 \sqrt{3}</math>.
# Nullstellen: 4 und -4. Der Flächeninhalt hat den Wert <math>\frac{7936}{15}</math>.
# Nullstellen: 4 und -4. Der Flächeninhalt hat den Wert <math>\frac{7936}{15}</math>.

Version vom 8. Dezember 2009, 21:25 Uhr