Funktion - eine eindeutige Zuordnung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 38: | Zeile 38: | ||
{{LearningApp|app=ppvafpsdn20|width=100%|height=400px}} | {{LearningApp|app=ppvafpsdn20|width=100%|height=400px}} | ||
{{button | |||
|position=rechts | |||
|text=Funktion - eine eindeutige Zuordnung <span class="fa fa-chevron-circle-right"></span> | |||
|link=Benutzer: Funktionen - Sprache | |||
}} | |||
{{button | |||
|position=links | |||
|text=Funktion - eine eindeutige Zuordnung <span class="fa fa-chevron-circle-right"></span> | |||
|link=Benutzer: Einführung von Funktionen | |||
}} |
Version vom 26. März 2020, 13:40 Uhr
Lernpfad
Funktion - eine eindeutige Zuordnung
Funktion - eine eindeutige Zuordnung
Im Rahmen dieses Lernpfades solltes du gewisse Lernziele und Grundkompetenzen für die schriftliche Reifeprüfung erwerben.
Den Funktionsbegriff kennen und verstehen können.
- FA 1.1: Für gegebene Zusammenhänge entscheiden können, ob man sie als Funktion betrachten kann.
Funktionen
Funktionen sind Zuordnungen mit einer besonderen Eigenschaft: Als Funktion bezeichnet man eine Zuordnung, die jedem Argument genau einen Wert, den Funktionswert, zuordnet. Vereinfacht gesagt: "Eine Funktion ist eine eindeutige Zuordnung."
Musterbeispiel
Lösung
- Da jeder Mensch (Argument) nur eine leibliche Mutter (Wert) besitzt, handelt es sich bei dieser Zuordnung um eine eindeutige Zuordnung, also um eine Funktion.
- Da eine Mutter (Argument) mehrere Kinder (Wert) haben kann, handelt es sich bei dieser Zuordnung um keine eindeutige Zuordnung, also um keine Funktion.
- Da jedem Argument a genau ein Wert g(a) zugeordnet ist, handelt es sich um die Wertetabelle einer Funktion.
- Da einigen Argumenten mehrere Werte zugeordnet werden, handelt es sich nicht um einen Funktionsgraphen.
Üben
Lösung
- Ja, da es sich um eine eindeutige Zuordnung zwischen jedem Auto (Argument) und seinem Kennzeichen (Wert) handelt.
- Nein, da einige Argumente (beispielsweise -2) zwei Werte zugeordnet werden, handelt es sich um keine Wertetabelle einer Funktion.
- Ja, da es sich um eine eindeutige Zuordnung zwischen jedem erwachsenen Österreicher (Argument) und seiner Sozialversicherungsnummer (Wert) handelt.
- Ja, da jedem Argument genau ein Wert zugeordnet wird, handelt es sich um den Graphen einer Funktion (Funktionsgraph).
Siehe auch
- Vorlage:Show-Hide (in englischer Sprache)