Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen
(Bilder hinzugefügt) Markierung: 2017-Quelltext-Bearbeitung |
(Gestuften Hilfen mit Bildern hinzugefügt) Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 4: | Zeile 4: | ||
<div class="lueckentext-quiz"> | <div class="lueckentext-quiz"> | ||
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine '''Bernoulli-Kette''' der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die '''Formel von Bernoulli''' (<math>P(X=k)=\tbinom{n}{k}\cdot p^k \cdot (1-p)^{n-k}</math>) berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt '''Binomialverteilung''' mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige '''Verteilungsfunktion''', für deren Wahrscheinlichkeit die Schreibweise <math>P(X\leq k)</math> üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet: <math>P(X\leq k)=\sum_{i=0}^k B_{n,p}(i)</math> | Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man ''' Bernoulli-Experiment'''. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine '''Bernoulli-Kette''' der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die '''Formel von Bernoulli''' (<math>P(X=k)=\tbinom{n}{k}\cdot p^k \cdot (1-p)^{n-k}</math>) berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt '''Binomialverteilung''' mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige '''Verteilungsfunktion''', für deren Wahrscheinlichkeit die Schreibweise <math>P(X\leq k)</math> üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet: <math>P(X\leq k)=\sum_{i=0}^k B_{n,p}(i)</math> | ||
</div>|3=Arbeitsmethode | </div>|3=Arbeitsmethode | ||
Zeile 12: | Zeile 12: | ||
{{Box|1=Übung 2: Grafische Anschauung und Berechnung von Wahrscheinlichkeiten|2= | {{Box|1=Übung 2: Grafische Anschauung und Berechnung von Wahrscheinlichkeiten|2= | ||
Die Schüler*innen der Fridays For Future Gruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. | Die Schüler*innen der Fridays For Future Gruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. Für die folgenden Aufgaben wird angenommen, dass immer noch 71% der Menschen in Deutschland sich durch den Klimawandel bedroht fühlen. <br><br> | ||
a) Skizziere die Binomialverteilung. | |||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
[[Datei:Neueins.png|600px]] | [[Datei:Neueins.png|600px]] | ||
Zeile 19: | Zeile 19: | ||
Bereche die Wahrscheinlichkeit dafür,...<br><br> | Bereche die Wahrscheinlichkeit dafür,...<br><br> | ||
b) dass in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | b) dass in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | ||
{{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Zur Berechnung nutze deinen Taschenrechner!<br> | {{Lösung versteckt|1=In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.<br> [[Datei:Neuzwei.png|600px]]<br>Nutze die Formel von Bernoulli!<br> Zur Berechnung nutze deinen Taschenrechner!<br> | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 27: | Zeile 27: | ||
c) Das '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | c) Das '''höchstens''' 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1= Höchtes heißt, es können 1,2,3, ...680 der Befragten den Klimawandel als Bedrohung ansehen.<br> | {{Lösung versteckt|1= Höchtes heißt, es können 1,2,3, ...680 der Befragten den Klimawandel als Bedrohung ansehen.<br>In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.<br>[[Datei:NeuDrei.png|600px]]<br> | ||
Nutze | Nutze die Formel für die kumulierten Wahrscheinlichkeit (siehe Übung 1).<br> Nutze zur Berechnung deinen Taschenrechner!<br> | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 36: | Zeile 36: | ||
d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | d) Das '''mindestens''' 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen. | ||
{{Lösung versteckt|1= Mindestwahrscheinlichkeiten werden über die Gegenwahrscheinlichkeit berechnet:<br> '''P(mindestens k)= 1 - P(höchstens k - 1)'''<br> Die Wahrscheinlichkeit für höchstens kannst du wieder mit dem Taschenrechner berechnen.<br> | {{Lösung versteckt|1= Mindestens heißt, es können 740, 741, ...,1000 der Befragten den Klimawandel als Bedrohung ansehen.<br> In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert. <br> [[Datei:NeuVier.png|600px]] | ||
Mindestwahrscheinlichkeiten werden über die Gegenwahrscheinlichkeit berechnet:<br> '''P(mindestens k)= 1 - P(höchstens k - 1)'''<br> Die Wahrscheinlichkeit für höchstens kannst du wieder mit dem Taschenrechner berechnen.<br> | |||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= |
Version vom 10. Dezember 2019, 11:11 Uhr
Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man Bernoulli-Experiment. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine Bernoulli-Kette der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die Formel von Bernoulli () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt Binomialverteilung mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige Verteilungsfunktion, für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:
Vor allem die grafische Anschauung der Binomialverteilung und der Umgang mit kumulierten Wahrscheinlichkeiten sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Die Schüler*innen der Fridays For Future Gruppe befragen 1000 Menschen in Deutschland, ob sie den Klimawandel als Bedrohung ansehen. Für die folgenden Aufgaben wird angenommen, dass immer noch 71% der Menschen in Deutschland sich durch den Klimawandel bedroht fühlen.
a) Skizziere die Binomialverteilung.
Bereche die Wahrscheinlichkeit dafür,...
b) dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
Nutze die Formel von Bernoulli!
Zur Berechnung nutze deinen Taschenrechner!
.
c) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Höchtes heißt, es können 1,2,3, ...680 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
Nutze zur Berechnung deinen Taschenrechner!
d) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Mindestens heißt, es können 740, 741, ...,1000 der Befragten den Klimawandel als Bedrohung ansehen.
In der Skizze ist die gesuchte Wahrscheinlichkeit rot markiert.
P(mindestens k)= 1 - P(höchstens k - 1)
Die Wahrscheinlichkeit für höchstens kannst du wieder mit dem Taschenrechner berechnen.
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!