Signifikanztest für binomialverteilte Zufallsgrößen/Wiederholung Binomialverteilung: Unterschied zwischen den Versionen
(Lösung 2a ) Skizze hinzugefügt) Markierung: 2017-Quelltext-Bearbeitung |
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 12: | Zeile 12: | ||
{{Box|1=Übung 2: Grafische Anschauung und Berechnung von Wahrscheinlichkeiten|2= | {{Box|1=Übung 2: Grafische Anschauung und Berechnung von Wahrscheinlichkeiten|2= | ||
Es soll die Aussage "'''71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an'''" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt.<br> | Es soll die Aussage "'''71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an'''" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt.<br><br> | ||
a) Skizziere die zugehörige Binomialverteilung. | a) Skizziere die zugehörige Binomialverteilung. | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
Zeile 19: | Zeile 19: | ||
Bereche folgende Wahrscheinlichkeiten!<br><br> | Bereche folgende Wahrscheinlichkeiten!<br><br> | ||
b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | b) Das in der Stichprobe '''genau''' 710 Menschen den Klimawandel als Bedrohung ansehen. | ||
{{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> | {{Lösung versteckt|1=Nutze die Formel von Bernoulli!<br> Gib im Taschenrechner die Funktion binompdf(n,p,k)ein. Wobei n die Anzahl der Versuche(Befragung), p die Wahrscheinlichkeit für einen Treffer und k die Anzahl der Treffer sind. | ||
|2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | |2=gestufte Hilfe einblenden|3= gestufte Hilfe ausblenden}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
<math>P(X=710)=\tbinom{1000}{710}\cdot 0,71^{710}\cdot0,29^{290}</math><math>=0,0278</math>.<br> Die Wahrscheinlichkeit, dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,78 %. | <math>P(X=710)=\tbinom{1000}{710}\cdot 0,71^{710}\cdot0,29^{290}</math><math>=0,0278</math>.<br> | ||
In den Taschrenrechner wurde zur Berechnung folgende Funktion eingegeben binomcdf (1000, 0.71, 710).<br> | |||
Die Wahrscheinlichkeit, dass in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,78 %. | |||
}} | }} | ||
Version vom 19. November 2019, 08:59 Uhr
Hier wiederholst du nochmal kurz die wichtigsten Inhalte der Binomialverteilung.
Fülle den Lückentext aus!
Ein Zufallsexperiment mit genau zwei Ergebnissen (Treffer und Niete) nennt man Bernoulli-Experiment. Wird solch ein Experiment n-mal wiederholt, und sind die Versuche unabhängig voneinander, erhält man eine Bernoulli-Kette der Länge n. Ist p die Trefferwahrscheinlichkeit und X eine Zufallsvariable, welche die Anzahl k der Treffer angibt, dann kann die Wahrscheinlichkeit für k Treffer durch die Formel von Bernoulli () berechnet werden. Die Wahrscheinlichkeitsverteilung für X heißt Binomialverteilung mit den Parametern n und p. Neben der Binomialverteilung benötigt man auch häufig die zugehörige Verteilungsfunktion, für deren Wahrscheinlichkeit die Schreibweise üblich ist. Die kumulierten Wahrscheinlichkeiten werden wie folgt berechnet:
Vor allem der Umgang mit kumuliertern Wahrscheinlichkeiten und die grafische Anschauung der Binomialverteilung sind wichtig für die Durchführung eines Signifikanztests. Prüfe und wiederhole dein Können dazu in Übung 2.
Es soll die Aussage "71 % der Menschen in Deutschland sehen den Klimawandel als Bedrohung an" überprüft werden. Dazu werden 1000 Menschen in Deutschland befragt.
a) Skizziere die zugehörige Binomialverteilung.
Bereche folgende Wahrscheinlichkeiten!
b) Das in der Stichprobe genau 710 Menschen den Klimawandel als Bedrohung ansehen.
Gib im Taschenrechner die Funktion binompdf(n,p,k)ein. Wobei n die Anzahl der Versuche(Befragung), p die Wahrscheinlichkeit für einen Treffer und k die Anzahl der Treffer sind.
.
In den Taschrenrechner wurde zur Berechnung folgende Funktion eingegeben binomcdf (1000, 0.71, 710).
c) Das höchstens 680 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Zur Berechnung nutze in deinem Taschenrechner die Funktion binomcdf(n,p,k).
Die Wahrscheinlichkeit, dass in der Stichprobe höchstens 680 der Menschen den Klimawandel als Bedrohung ansehen, beträgt 2,06 %
d) Das mindestens 740 Menschen aus der Stichprobe den Klimawandel als Bedrohung sehen.
Nutze in deinem Taschenrechner die Funktion binomcdf(n,p,k)
Die Wahrscheinlichkeit, dass in der Stichprobe mindestens 740 Menschen den Klimawandel als Bedrohung ansehen, beträgt 1,91 %.
Super gemacht! Dann geht es jetzt weiter mit dem Signifikanztest!