Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
(Unterseiten) Markierung: 2017-Quelltext-Bearbeitung |
||
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt) | |||
Zeile 2: | Zeile 2: | ||
==Die Tangente== | ==Die Tangente== | ||
Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.{{Box|Aufgabe 1|a) In [[Aufgabe 1a)|diesem Applet]] sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten <br/> | Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.{{Box|Aufgabe 1|a) In [[/Aufgabe 1a)|diesem Applet]] sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten <br/> | ||
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | ||
b) Zoomen Sie in [[Aufgabe 2a)|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie sie sehen. <br/> | b) Zoomen Sie in [[/Aufgabe 2a)|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie sie sehen. <br/> | ||
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | ||
c) Zoomen Sie in [[Aufgabe 1c)|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie sie sehen. <br/> | c) Zoomen Sie in [[/Aufgabe 1c)|diesem Applet]] in den Berührpunkt der Tangente und beschreiben Sie sie sehen. <br/> | ||
{{Lösung versteckt|1= Lösung |Merksatz}} | {{Lösung versteckt|1= Lösung |Merksatz}} | ||
<br/> | <br/> | ||
Zeile 18: | Zeile 18: | ||
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | ||
b) Berechnen Sie in [[Aufgabe | b) Berechnen Sie in [[/Aufgabe 2b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/> | ||
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | ||
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf. <br/> | c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf. <br/> | ||
{{Lösung versteckt|1=[[Datei:Differenzenquotient Bild.png|rand| | {{Lösung versteckt|1=[[Datei:Differenzenquotient Bild.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}} | ||
|Arbeitsmethode | |Arbeitsmethode | ||
}} | }} |
Aktuelle Version vom 26. August 2020, 07:39 Uhr
Die Tangente
Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.
a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten
b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie sie sehen.
c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie sie sehen.
Die Steigung einer Sekante
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?
b) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.
Die Steigung der Tangente
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?
b) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.