Trigonometrische Funktionen/Einfluss von d: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Keine Bearbeitungszusammenfassung
 
(4 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)
Zeile 4: Zeile 4:
===Einfluss von d===
===Einfluss von d===


Wir betrachten nun den Einfluss von <math> \ d </math> in  
Wir betrachten nun den Einfluss von <math> d </math> in  


:<math> x \rightarrow \sin x + d </math>.  
:<math> x \rightarrow \sin x + d </math>.


{{Box|1=Aufgabe D1|2=
{{Box|1=Aufgabe D1|2=
<ggb_applet height="450" width="900" id="jr7hupnz" />  <br>
<ggb_applet height="450" width="900" id="jr7hupnz" />  <br>


# Öffne dieses GeoGebra-Applet. Mit dem Schieberegler kannst du den Wert von <math> \ d </math> ändern. <br>
# Öffne dieses GeoGebra-Applet. Mit dem Schieberegler kannst du den Wert von <math> d </math> ändern. <br>
# Stelle den Schieberegler auf <math> \ d = 1 </math> ein. Wie ändert sich der Graph? <br>
# Stelle den Schieberegler auf <math> d = 1 </math> ein. Wie ändert sich der Graph? <br>
# Überlege dir, wie sich die Werte <math> \ d = 2 </math> und <math> \ d = -1 </math> sowie <math> \ d = 0,5 </math> auf den Graphen auswirken und überprüfe deine Vermutung.  <br>
# Überlege dir, wie sich die Werte <math> d = 2 </math> und <math> d = -1 </math> sowie <math> d = 0,5 </math> auf den Graphen auswirken und überprüfe deine Vermutung.  <br>
# Formuliere das Ergebnis deiner Untersuchungen. <br>
# Formuliere das Ergebnis deiner Untersuchungen. <br>
|3=Arbeitsmethode}}
|3=Arbeitsmethode}}
Zeile 20: Zeile 20:
Man erhält den Graph der Funktion  
Man erhält den Graph der Funktion  
:<math> x \rightarrow \sin  x + d </math>
:<math> x \rightarrow \sin  x + d </math>
aus dem Graph der Sinusfunktion durch Verschiebung in Richtung der <math>\ y</math>-Achse. Genauer:
aus dem Graph der Sinusfunktion durch Verschiebung in Richtung der <math>y</math>-Achse. Genauer:
* <span style="background-color:yellow;"> Ist <math>\ d</math> positiv, so wird der Graph der Sinusfunktion um den Betrag von <math> \ d </math> nach oben verschoben.  
* <span style="background-color:yellow;"> Ist <math>d</math> positiv, so wird der Graph der Sinusfunktion um den Betrag von <math> d </math> nach oben verschoben.  
* <span style="background-color:yellow;"> Ist <math>\ d</math> negativ, so wird der Graph der Sinusfunktion um den Betrag von <math> \ d </math> nach unten verschoben.|3=Merksatz}}  
* <span style="background-color:yellow;"> Ist <math>d</math> negativ, so wird der Graph der Sinusfunktion um den Betrag von <math> d </math> nach unten verschoben.|3=Merksatz}}  
</span>
</span>


Zeile 50: Zeile 50:


}
}
| <math>\ d<-1; </math> | <math> -1<\ d<0; </math> | <math> 0<\ d<1; </math> | <math> 1<\ d</math>  
| <math>d<-1; </math> | <math> -1<d<0; </math> | <math> 0<d<1; </math> | <math> 1<d</math>  


--++ Verschiebung nach oben
--++ Verschiebung nach oben
Zeile 56: Zeile 56:
---- Verschiebung nach rechts
---- Verschiebung nach rechts
---- Verschiebung nach links
---- Verschiebung nach links
---- Streckung in <math> \ x </math>- Richtung / Verkleinerung der Frequenz
---- Streckung in <math> x </math>- Richtung / Verkleinerung der Frequenz
---- Stauchung in <math> \ x </math>- Richtung / Vergrößerung der Frequenz
---- Stauchung in <math> x </math>- Richtung / Vergrößerung der Frequenz
---- Streckung in <math> \ y </math>- Richtung / Vergrößerung der Amplitude
---- Streckung in <math> y </math>- Richtung / Vergrößerung der Amplitude
---- Stauchung in <math> \ y </math>- Richtung / Verkleinerung der Amplitude
---- Stauchung in <math> y </math>- Richtung / Verkleinerung der Amplitude
---- Spiegelung an <math> \ x </math>- Achse
---- Spiegelung an <math> x </math>- Achse
---- Spiegelung an <math> \ y </math>- Achse
---- Spiegelung an <math> y </math>- Achse
</quiz>
</quiz>


Zeile 68: Zeile 68:




Nun betrachten wir den Einfluss von <math> \ d </math> in
Nun betrachten wir den Einfluss von <math> d </math> in


:<math> x \rightarrow \cos x + d </math>.  
:<math> x \rightarrow \cos x + d </math>.


{{Box|1= Aufgabe D4|2=
{{Box|1= Aufgabe D4|2=
Zeile 78: Zeile 78:
|3=Arbeitsmethode}}
|3=Arbeitsmethode}}
{{Lösung versteckt|1=
{{Lösung versteckt|1=
Die allgemeine Kosinusfunktion verhält sich bei Variation von <math> \ d </math> genauso wie die allgemeine Sinusfunktion.
Die allgemeine Kosinusfunktion verhält sich bei Variation von <math> d </math> genauso wie die allgemeine Sinusfunktion.
[[Bild:N_cos_d.jpg|center]]}}
[[Bild:N_cos_d.jpg|center]]}}


Zeile 87: Zeile 87:
----
----


{{Weiter|Trigonometrische Funktionen/Einfluss der Parameter|Zurück zu Station 1: Einfluss der Parameter}}
{{Fortsetzung|weiter=Zurück zu Station 1: Einfluss der Parameter|weiterlink=Trigonometrische Funktionen/Einfluss der Parameter}}
[[Kategorie:Interaktive Übung]]
[[Kategorie:GeoGebra]]

Aktuelle Version vom 23. April 2022, 16:29 Uhr

FAQ

Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.

Einfluss von d

Wir betrachten nun den Einfluss von in

.

Aufgabe D1
GeoGebra

  1. Öffne dieses GeoGebra-Applet. Mit dem Schieberegler kannst du den Wert von ändern.
  2. Stelle den Schieberegler auf ein. Wie ändert sich der Graph?
  3. Überlege dir, wie sich die Werte und sowie auf den Graphen auswirken und überprüfe deine Vermutung.
  4. Formuliere das Ergebnis deiner Untersuchungen.
Merek

Man erhält den Graph der Funktion

aus dem Graph der Sinusfunktion durch Verschiebung in Richtung der -Achse. Genauer:

  • Ist positiv, so wird der Graph der Sinusfunktion um den Betrag von nach oben verschoben.
  • Ist negativ, so wird der Graph der Sinusfunktion um den Betrag von nach unten verschoben.

N sin d.jpg
N sin c.jpg

Aufgabe D2
Versuche nun die beobachteten Veränderungen auch mathematisch zu begründen!

Hier genügt es, wenn du diese Aufgabe mit Hilfe von Plausibilitätsüberlegungen gelöst hast. Eine formale Begründung war nicht notwendig.


Eine mögliche Begründung:

Zu jedem Funktionswert wird ein bestimmter Wert addiert, d.h. der Graph der Funktion wird um diesen Wert nach oben verschoben. Ist dieser Wert negativ, so bedeutet dies, dass von jedem Funktionswert ein bestimmer Wert abgezogen wird, d.h. der Graph wird entsprechend um diesen Wert nach unten verschoben.

Aufgabe D3

Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!

Verschiebung nach oben
Verschiebung nach unten
Verschiebung nach rechts
Verschiebung nach links
Streckung in - Richtung / Verkleinerung der Frequenz
Stauchung in - Richtung / Vergrößerung der Frequenz
Streckung in - Richtung / Vergrößerung der Amplitude
Stauchung in - Richtung / Verkleinerung der Amplitude
Spiegelung an - Achse
Spiegelung an - Achse


Nun betrachten wir den Einfluss von in

.

Aufgabe D4
GeoGebra

Öffne dieses GeoGebra-Applet und bearbeite damit die Aufgabe D1 noch einmal .

Die allgemeine Kosinusfunktion verhält sich bei Variation von genauso wie die allgemeine Sinusfunktion.

N cos d.jpg

Hefteintrag: Beachte, dass in der Lösung zur Aufgabe D1 ein Hefteintrag "versteckt" ist!