Zentrische Streckung/Vierstreckensatz: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 12: Zeile 12:
}}
}}


== 1. Station: Erster Vierstreckensatz - Schenkellösung ==
==1. Station: Erster Vierstreckensatz - Schenkellösung==
[[Bild:Porzelt_Laptop.jpg]]<br>
[[Bild:Porzelt_Laptop.jpg]]<br>
'''Zoll''' ist eine '''Längeneinheit''', die im Alltag häufig zu finden ist, z.B. bei Laptops, Computern und Fernsehern. <br>
'''Zoll''' ist eine '''Längeneinheit''', die im Alltag häufig zu finden ist, z.B. bei Laptops, Computern und Fernsehern. <br>
Um sich die Größe besser vorstellen zu können, soll die Einheit Zoll in Zentimeter umgerechnet werden. <br>
Um sich die Größe besser vorstellen zu können, soll die Einheit Zoll in Zentimeter umgerechnet werden. <br>
Hierfür gibt es zwei Möglichkeiten:<br>
Hierfür gibt es zwei Möglichkeiten:<br>
*die algebraische Berechnung<br>
*die algebraische Berechnung<br>
*oder die geometrische.<br>
*oder die geometrische.<br>
Als Beispiel nehmen wir die Umrechnung von einem 15-Zoll-Laptop.<br>
Als Beispiel nehmen wir die Umrechnung von einem 15-Zoll-Laptop.<br>
<br>
<br>
*Finde heraus wie du die Aufgabe '''algebraisch''' lösen kannst:  
 
*Finde heraus wie du die Aufgabe '''algebraisch''' lösen kannst:
{{Aufgabe|1=
{{Aufgabe|1=
:'''Gegeben''': Der Laptop hat einen 15 Zoll Bildschirm. 1 Zoll entspricht 2,54 cm.
:'''Gegeben''': Der Laptop hat einen 15 Zoll Bildschirm. 1 Zoll entspricht 2,54 cm.
Zeile 32: Zeile 35:
}}
}}


*Im Folgenden wird dir gezeigt, wie du die Aufgabe '''geometrisch''' lösen kannst.  
*Im Folgenden wird dir gezeigt, wie du die Aufgabe '''geometrisch''' lösen kannst.


{{Aufgabe|1=
{{Aufgabe|1=


# Schritt: Zeichne zwei Halbgeraden mit gemeinsamen Anfangspunkt Z und trage auf diesen Halbgeraden <br>
# Schritt: Zeichne zwei Halbgeraden mit gemeinsamen Anfangspunkt Z und trage auf diesen Halbgeraden die Längen 1 cm und 15 cm ab! Benenne die Endpunkte der Strecken mit <math>A</math> und <math>B</math>
:die Längen 1 cm und 15 cm ab! Benenne die Endpunkte der Strecken mit <math>A</math> und <math>B</math>! <br>
# Schritt: Verbinde Punkt A mit Punkt B
# Schritt: Verbinde Punkt A mit Punkt B!<br>
# Schritt: Trage in <math>Z</math> die Strecke <math>[ZA']</math> mit <math>\overline{ZA'} = 2,54\ cm</math> ab
# Schritt: Trage in <math>Z</math> die Strecke <math>[ZA']</math> mit <math>\overline{ZA'} = 2,54\ cm</math> ab! <br>
# Schritt: Zeichne eine Parallele durch <math>A'</math> zu <math>[AB]</math>
# Schritt: Zeichne eine Parallele durch <math>A'</math> zu <math>[AB]</math>!<br>
# Schritt: Benenne Schnittpunkt mit <math>B'</math>
# Schritt: Benenne Schnittpunkt mit <math>B'</math>! <br>
# Schritt: Miss <math>\overline{ZB'}</math> ab
 
 
# Schritt: Miss <math>\overline{ZB'}</math> ab
 


{{TODO
{{TODO
Zeile 53: Zeile 52:
}}
}}


==== Die Rechnung, die dahinter steckt: ====
====Die Rechnung, die dahinter steckt:====


Vorausgesetzt wird, dass die Gerade '''<math>{A'B'}</math> zu <math>{AB}</math> parallel''' ist. Das '''Dreieck <math>{A'ZB'}</math>''' kann somit als das '''Bild''' des '''Dreiecks <math>AZB</math> (Urbild)''' mit dem Streckungszentrum <math>Z</math> aufgefasst werden. Der Punkt <math>A</math> wurde also '''auf''' den Punkt <math>A'</math> und Punkt <math>B</math> wurde '''auf''' Punkt <math>B'</math> abgebildet.
Vorausgesetzt wird, dass die Gerade '''<math>{A'B'}</math> zu <math>{AB}</math> parallel''' ist. Das '''Dreieck <math>{A'ZB'}</math>''' kann somit als das '''Bild''' des '''Dreiecks <math>AZB</math> (Urbild)''' mit dem Streckungszentrum <math>Z</math> aufgefasst werden. Der Punkt <math>A</math> wurde also '''auf''' den Punkt <math>A'</math> und Punkt <math>B</math> wurde '''auf''' Punkt <math>B'</math> abgebildet.
Zeile 83: Zeile 82:
{{Fortsetzung
{{Fortsetzung
   |weiter=Weiter zur 2. Station: Erster Vierstreckensatz - Abschnittlösung
   |weiter=Weiter zur 2. Station: Erster Vierstreckensatz - Abschnittlösung
   |weiterlink=/2.Station}}
   |weiterlink=/2.Station}}{{TODO|Lernpfad Navigation als Vorlage/Include einsetzen}}
 
[[Kategorie:Keine Kategorie]]
[[Kategorie:Mathematik]]
{{TODO|Lernpfad Navigation als Vorlage/Include einsetzen}}

Aktuelle Version vom 23. April 2022, 16:01 Uhr

Lernpfad: Vierstreckensatz

In diesem Lernpfad durchläufst du 5 Stationen. Sie sind wie folgt gegliedert:

Porzelt Vierstreckensatz.jpg


1. Station: Erster Vierstreckensatz - Schenkellösung

Porzelt Laptop.jpg
Zoll ist eine Längeneinheit, die im Alltag häufig zu finden ist, z.B. bei Laptops, Computern und Fernsehern.
Um sich die Größe besser vorstellen zu können, soll die Einheit Zoll in Zentimeter umgerechnet werden.
Hierfür gibt es zwei Möglichkeiten:

  • die algebraische Berechnung
  • oder die geometrische.

Als Beispiel nehmen wir die Umrechnung von einem 15-Zoll-Laptop.

  • Finde heraus wie du die Aufgabe algebraisch lösen kannst:

Aufgabe
Gegeben: Der Laptop hat einen 15 Zoll Bildschirm. 1 Zoll entspricht 2,54 cm.
Gesucht: Umrechnung von 15 Zoll in cm.
Lösung: Berechne in deinem Heft und trage hier deine Lösung mit Angabe der Einheit (cm) ein!
(Bitte mach ein Leerzeichen zwischen Zahl und Einheit.)

15 Zoll entsprechen 38,1 cm (Tipp: Berechne mit Hilfe des Dreisatzes).

  • Im Folgenden wird dir gezeigt, wie du die Aufgabe geometrisch lösen kannst.

Aufgabe
  1. Schritt: Zeichne zwei Halbgeraden mit gemeinsamen Anfangspunkt Z und trage auf diesen Halbgeraden die Längen 1 cm und 15 cm ab! Benenne die Endpunkte der Strecken mit und
  2. Schritt: Verbinde Punkt A mit Punkt B
  3. Schritt: Trage in die Strecke mit ab
  4. Schritt: Zeichne eine Parallele durch zu
  5. Schritt: Benenne Schnittpunkt mit
  6. Schritt: Miss ab

Die Rechnung, die dahinter steckt:

Vorausgesetzt wird, dass die Gerade zu parallel ist. Das Dreieck kann somit als das Bild des Dreiecks (Urbild) mit dem Streckungszentrum aufgefasst werden. Der Punkt wurde also auf den Punkt und Punkt wurde auf Punkt abgebildet.

Aus dem vorherigen Lernpfad wissen wir, dass das Längenverhältnis von Strecken bei einer zentrischen Streckung, wegen der
Eigenschaft der Längenverhältnistreue, gleich ist.

Aufgabe

Was bedeutet dies? Eine kleine Wiederholung kann nicht schaden. Setze dafür die richtige Aussage in die passende Lücke ein:

=
Aufgelöst nach :

Gleichsetzen:
Einsetzen der Werte ergibt:

Porzelt lobenderPanto8.jpg

Merke
Porzelt Panto-2.jpg
Die Formel sagt aus, dass sich die Abschnitte auf der einen Halbgeraden genauso verhalten wie die Abschnitte auf der anderen Halbgeraden. Diesen Satz nennt man den ersten Vierstreckensatz. In unserem Beispiel wurden die Schenkel betrachtet, deshalb wird es auch die Schenkellösung genannt.