Zentrische Streckung/Abbildung durch zentrische Streckung: Unterschied zwischen den Versionen
Aus ZUM-Unterrichten
Main>Leonie Porzelt (quiz neben zeichnung gestellt) |
Main>Leonie Porzelt (alle stationen wieder eingefügt) |
||
Zeile 1: | Zeile 1: | ||
__NOTOC__ | |||
{{Lernpfad-M|===Abbildung durch zentrische Streckung===}} | |||
<br> | |||
<br> | |||
==1. Station: Ähnlichkeitsabbildung== | |||
:Hier siehst du Panto mit einer Taschenlampe. Schalte die Taschenlampe ein, dann leuchtet | |||
:sie direkt auf einen grünen Strohhalm. An der Wand entsteht dabei ein Schatten. | |||
:Verschiebe Panto näher an den Strohhalm heran, oder weiter von dem Strohhalm weg. | |||
<br> | |||
<br> | |||
<ggb_applet height="500" width="800" showResetIcon="true" filename="Porzelt_Taschenlampe.ggb" /> | |||
<br> | |||
<br> | |||
<br> | |||
:'''''Lies die folgenden Beobachtungen konzentriert durch und hake die richtigen Aussagen ab:''''' | |||
<br> | |||
<quiz display="simple"> | |||
{ '''Wie ändert sich der Schatten durch das Verschieben?'''} | |||
+Je '''näher''' Panto mit der Taschenlampe auf den Strohhalm leuchtet, desto '''größer''' ist der Schatten. | |||
-Je '''näher''' Panto mit der Taschenlampe auf den Strohhalm leuchtet, desto '''kleiner''' ist der Schatten. | |||
+Je '''weiter''' Panto mit der Taschenlampe von dem Strohhalm entfernt ist, desto '''kleiner''' ist der Schatten. | |||
-Je '''weiter''' Panto mit der Taschenlampe von dem Strohhalm entfernt ist, desto '''größer''' ist der Schatten. | |||
</quiz> | |||
<br> | |||
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;"> | |||
:Der Trinkstrohhalm wird als '''Urbild''' und der Schatten als '''Bild''' bezeichnet. | |||
:Wie man sieht haben der Trinkstrohhalm und der Schatten verschiedene Größen, doch sie sind sich ähnlich. | |||
:Deshalb spricht man von einer '''Ähnlichkeitsabbildung'''. Ein weiteres bekanntes Beispiel ist der Diaprojektor. | |||
:Damit kann ein Bild durch Projektion an die Wand vergrößert werden. | |||
:Die Vergrößerung geht von einem Zentrum, in unserem Beispiel der Taschenlampe, aus. Man spricht hierbei von | |||
:einer '''zentrischen Streckung'''. Das '''Streckungszentrum''' wird mit '''Z''' bezeichnet. | |||
:Urbild, Bild und Streckungszentrum liegen auf den Lichtstrahlen, die von der Taschenlampe ausgehen. Diese | |||
:Lichtstrahlen sind Halbgeraden. | |||
</div> | |||
<br> | |||
==2. Station: Streckungsfaktor== | ==2. Station: Streckungsfaktor== | ||
:In dem nächsten Fall ist das Urbild ein Dreieck, dass du zentrisch strecken kannst, indem du an dem Schieberegler ziehst. | :In dem nächsten Fall ist das Urbild ein Dreieck, dass du zentrisch strecken kannst, indem du an dem Schieberegler ziehst. | ||
Zeile 46: | Zeile 82: | ||
</div> | </div> | ||
<br> | <br> | ||
==3. Station: Berechnung der Streckenlängen und des Streckungsfaktors== | |||
:Wie ihr in der 2. Station schon herausgefunden habt ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke. | |||
:Geometrisch bedeutet dies: <span style="text-decoration: overline;">ZB'</span> = |k| ∙ <span style="text-decoration: overline;">ZB</span> | |||
==4. Station: Zusammenfassung== | |||
==5. Station: Übung== |
Version vom 25. Juni 2009, 11:37 Uhr
1. Station: Ähnlichkeitsabbildung
- Hier siehst du Panto mit einer Taschenlampe. Schalte die Taschenlampe ein, dann leuchtet
- sie direkt auf einen grünen Strohhalm. An der Wand entsteht dabei ein Schatten.
- Verschiebe Panto näher an den Strohhalm heran, oder weiter von dem Strohhalm weg.
Die Datei [INVALID] wurde nicht gefunden.
- Lies die folgenden Beobachtungen konzentriert durch und hake die richtigen Aussagen ab:
- Der Trinkstrohhalm wird als Urbild und der Schatten als Bild bezeichnet.
- Wie man sieht haben der Trinkstrohhalm und der Schatten verschiedene Größen, doch sie sind sich ähnlich.
- Deshalb spricht man von einer Ähnlichkeitsabbildung. Ein weiteres bekanntes Beispiel ist der Diaprojektor.
- Damit kann ein Bild durch Projektion an die Wand vergrößert werden.
- Die Vergrößerung geht von einem Zentrum, in unserem Beispiel der Taschenlampe, aus. Man spricht hierbei von
- einer zentrischen Streckung. Das Streckungszentrum wird mit Z bezeichnet.
- Urbild, Bild und Streckungszentrum liegen auf den Lichtstrahlen, die von der Taschenlampe ausgehen. Diese
- Lichtstrahlen sind Halbgeraden.
2. Station: Streckungsfaktor
- In dem nächsten Fall ist das Urbild ein Dreieck, dass du zentrisch strecken kannst, indem du an dem Schieberegler ziehst.
- Der Schieberegler durchläuft die positiven Zahlen von k=0 bis k=3.
Die Datei [INVALID] wurde nicht gefunden. | Was verändert sich? Orientiere dich dabei an diesen Fragen:
Auf welcher Seite von Z liegen das Urbild und das Bild? (auf derselben Seite) (!auf verschiedenen Seiten) Was liegt bei k>1 vor? (eine Vergrößerung) (!eine Verkleinerung) (!die Identität) Was liegt bei 0<k<1 vor? (!eine Vergrößerung) (eine Verkleinerung) (!die Identität) Was liegt bei k=1 vor? (!eine Vergrößerung) (!eine Verkleinerung) (die Identität) Was passiert wenn k=0 ist? (es erfolgt keine zentrische Streckung) (!es erfolgt eine zentrische Streckung) |
- Was sind die Unterschiede, wenn ihr dieses Dreieck zentrisch streckt?
- Orientiere dich dabei an diesen Fragen:
- Auf welcher Seite von Z liegen das Urbild und das Bild?
- Welche Zahlen werden für k eingesetzt? Positive oder Negative?
Die Datei [INVALID] wurde nicht gefunden.
- Hier findet ihr die Beobachtungen von Dia:
- Urbild und Bild liegen auf verschiedenen Seiten von Z.
- Es werden negative Zahlen verwendet.
- Um herauszufinden was das k bedeutet, müsst ihr euch jetzt bei dieser zentrischen Streckung anschauen, wie
- sich die Streckenlängen verändern, wenn ihr k verändert. Dazu müsst ihr euch die Streckenlängen anzeigen lassen.
- Zur Hilfe orientiert euch an dieser Frage:
- Was ist der Unterschied zwischen der Länge der Bildstrecke zur Urbildstrecke?
Die Datei [INVALID] wurde nicht gefunden.
- Hier könnt ihr eure Vermutung mit der von Dia vergleichen:
Die Bildstrecken sind jeweils |k|-mal so lang wie die Urbildstrecken.
- k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
3. Station: Berechnung der Streckenlängen und des Streckungsfaktors
- Wie ihr in der 2. Station schon herausgefunden habt ist die Bildstrecke |k|-mal so lang wie die Urbildstrecke.
- Geometrisch bedeutet dies: ZB' = |k| ∙ ZB