Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Michael Schuster
(Navigationsleiste geändert)
Main>Hans-Georg Weigand
Keine Bearbeitungszusammenfassung
Zeile 28: Zeile 28:
<span style="color: RED">XXX ZUSATZINFO EINFÜGEN? XXX (JW)</span>
<span style="color: RED">XXX ZUSATZINFO EINFÜGEN? XXX (JW)</span>


Du hat nun Potenzfunktionen der Bauart <math>f(x)=x^n</math> und <math>f(x)=x^{-n}</math> kennengelernt. Ihre Graphen spielen in der Mahtematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen:
Du hast nun Potenzfunktionen mit den Gleichungen <math>f(x)=x^n</math> und <math>f(x)=x^{-n}</math> kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen:


Die Graphen von Funktionen der Form <math>f(x)=x^n</math> mit einer natürlichen Zahl n heißen '''Parabeln''', oder genauer: <math>Parabel n-ter Ordnung</math>. Ist <math>f(x)=x^2</math>, dann heißt der Graph Normalparabel; wenn <math>f(x)=x^3</math> dann nennt man den Graphen '''kubische Grundparabel''' (oder '''Parabel dritter Ordnung''').
Die Graphen von Funktionen mit <math>f(x)=x^n</math> und einer natürlichen Zahl n heißen '''Parabeln''', oder genauer: <math>Parabel n-ter Ordnung</math>. Ist <math>f(x)=x^2</math>, dann heißt der Graph Normalparabel; wenn <math>f(x)=x^3</math> dann nennt man den Graphen '''kubische Grundparabel''' (oder '''Parabel dritter Ordnung''').
 
Die Graphen von Funktionen der Form <math>f(x)=x^{-n}</math> mit einer natürlichen Zahl n heißen '''Hyperbeln (n-ter Ordnung)'''. Hyperbeln haben stets je zwei Asymptoden, die auch die Lücken in Definitions- und Wertemenge beschreiben.


Die Graphen von Funktionen mit <math>f(x)=x^{-n}</math> und einer natürlichen Zahl n heißen '''Hyperbeln (n-ter Ordnung)'''. Diese haben die x- und die y-Achse als Asymptoten.
<span style="color: RED">XXX ZUSATZINFO ENDE XXX (JW)</span>
<span style="color: RED">XXX ZUSATZINFO ENDE XXX (JW)</span>



Version vom 11. Februar 2009, 15:18 Uhr

Die Graphen der Funktionen mit f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Parabel und Hyperbel

XXX ZUSATZINFO EINFÜGEN? XXX (JW)

Du hast nun Potenzfunktionen mit den Gleichungen und kennengelernt. Ihre Graphen spielen in der Mathematik und in den Naturwissenschaften eine wichtige Rolle und haben deshalb eigene Bezeichnungen:

Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Parabeln, oder genauer: . Ist , dann heißt der Graph Normalparabel; wenn dann nennt man den Graphen kubische Grundparabel (oder Parabel dritter Ordnung).

Die Graphen von Funktionen mit und einer natürlichen Zahl n heißen Hyperbeln (n-ter Ordnung). Diese haben die x- und die y-Achse als Asymptoten. XXX ZUSATZINFO ENDE XXX (JW)

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a*x-n, mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen