Potenzfunktionen - 2. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Hans-Georg Weigand
Keine Bearbeitungszusammenfassung
Main>Hans-Georg Weigand
Keine Bearbeitungszusammenfassung
Zeile 20: Zeile 20:
:{{Lösung versteckt|
:{{Lösung versteckt|
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-<math>\frac {1}{k^n}</math>-facht. <br>
:Wenn der x-Wert ver-k-facht wird, dann wird der y-Wert ver-<math>\frac {1}{k^n}</math>-facht. <br>
:Symbolisch <math>f(k \cdot x) = (kx)^{-n} = k^{-n} \cdot x^{-n} = \frac 1k \cdot f(x)</math>.
:Symbolisch <math>f(k \cdot x) = (kx)^{-n} = k^{-n} \cdot x^{-n} = \frac {1}{k^n} \cdot f(x)</math>.
}}
}}
}}<br>
}}<br>

Version vom 24. Januar 2009, 18:12 Uhr

Die Graphen der Funktionen mit f(x) = x-n, n IN

Gerade Potenzen

Wir betrachten zunächst die Graphen der Funktionen mit f(x) = x-n, wenn n eine gerade Zahl ist, also n = 2, 4, 6, ...

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Ungerade Potenzen

Wir betrachten nun die Graphen der Funktionen mit , wenn n eine ungerade Zahl ist, also n = 1, 3, 5, ..

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste dein Wissen

Vorlage:Arbeiten

Die Graphen von f(x) = a*x-n, mit a IR

Wir betrachten jetzt die Funktionen mit , wenn n eine natürliche Zahl und a eine reelle Zahl ist, also n IN, a IR .

Vorlage:Arbeiten Die Datei [INVALID] wurde nicht gefunden.


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Teste Dein Wissen