Nachricht für neue Nutzer.
Nachricht für engagierte Nutzer.
Achsensymmetrische Vierecke und Dreiecke: Unterschied zwischen den Versionen
Main>Laura Klaus Keine Bearbeitungszusammenfassung |
Main>Laura Klaus KKeine Bearbeitungszusammenfassung |
||
Zeile 93: | Zeile 93: | ||
'''4.Aufgabe''' | '''4.Aufgabe''' | ||
<br> | <br> | ||
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich 5 Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon 2 Vierecke ein, die du bereits kennst. Viel | In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich 5 Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon 2 Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen! | ||
<br> | <br> | ||
<div class="suchsel-quiz"><br> | <div class="suchsel-quiz"><br> |
Version vom 8. September 2009, 16:17 Uhr
Achsensymmetrische Vierecke und Dreiecke
Zeitbedarf: 45 Min.
Matreial: dein Heft, Stifte und ein Lineal!
In diesem Lernpfad sollen achsensymmtrische Vierecke und Dreicke kennengelernt werden. Dazu wollen wir als erstes nochmal wiederholen, was sich hinter dem Begriff der Achsensymmtrie verbirgt.
Notiere dir Merksätze und Definitionen in dein Heft!
1.Station: Wiederholung zur Achsensymmetrie
Kannst du dich noch an den Begriff der Achsensymmetrie erinnern? Oder wann eine Figur achsensymmetrisch ist?
Nein? Dann wollen wir uns diese Begriffe zusammen erarbeiten. Vielleicht fällt dir ja dann wieder ein, was es damit auf sich hat.
Also los geht´s!
1.Aufgabe
In unserem alltäglichen Leben gibt es einige Gegenstände, die besondere Eigenschaften aufweisen.Hier siehst du einige Beispiele dafür. Erkennst du die Besonderheiten?
Datei:Schmetterling.gif
Hier findest du die Lösung! Vorlage:Versteckt
Fallen dir noch mehr Gegenstände aus dem Alltag ein, die symmetrisch sind? Schreibe sie dir in dein Heft auf!
Was heißt achsensymmetrisch und kongruent?:
- Eine Figur heißt achsensymmetrisch, falls man sie in zwei Teile zerlegen kann und diese sich exakt überdecken.
- Die beiden Hälften sind dann kongruent zueinander.
- Die Gerade durch die die Figur geteilt wird, heißt Symmetrieachse.
- Die Symmetrieachse kann dabei waagrecht, senkrecht oder quer durch die Figur verlaufen.
- Es kann auch mehr als eine Symmetriachse geben!
2.Aufgabe
Zuordnung
Ordne die Bilder den richtigen Eigenschaften zu. Dazu musst du die Flaggen mit der linken Maustaste ziehen und fallen lassen, wenn der Hintergrund rot wird.
Übertrage anschließend je zwei Flaggen mit einer und zwei Symmetrieachsen in dein Heft und zeichne die Symmetriachsen ein!
keine Symmetrieachse
mehrere Symmetrieachsen
eine Symmetrieachse
zwei Symmetrieachsen
Konntest du alle Flaggen richtig zuordnen? Prima! Dann können wir ja zur nächsten Aufgabe gehen.
3.Aufgabe
Übertrage die drei Figuren in dein Heft und erweitere sie zu einer achsensymmetrischen Figur!
Datei:Stern.png
Ich denk du weißt jetzt wieder, was der Begriff der Achsensymmetrie heißt und was achsensymmetrische Figuren sind!
Bevor wir mit einem neuen Thema anfangen, lernen wir noch eine 2.Definition für das Wort achsensymmetrisch kennen. Diese hängt mit der Achsenspiegelung zusammen, die wir in den beiden vorherigen Lernpfaden durchgenommen haben.
Definition
Eine Figur, die man durch eine Achsenspiegelung auf sich selbst abbilden kann, heißt achsensymmetrisch.
2.Station:Achsensymmetrische Vierecke
4.Aufgabe
In dieser Aufgabe musst du herausfinden, welche Vierecke achsensymmetrisch sind. Es befinden sich 5 Vierecke im Such-Rätsel. Wenn du dich an Aufgabe 2 erinnerst, fallen dir vielleicht schon 2 Vierecke ein, die du bereits kennst. Viel Spaß beim Suchen!
Finde die Wörter! (Waagrecht (von links nach rechts), senkrecht (von oben nach unten) und schräg (von links unten nach rechts oben oder von oben links nach unten rechts), gefundene Wörter werden grün markiert)
D | U | D | V | Q | U | Z | L | Q | D |
E | Q | H | K | U | C | D | Y | B | Y |
R | T | T | B | A | M | P | D | Y | D |
E | E | A | X | D | N | E | B | M | I |
P | Y | C | M | R | A | U | T | E | P |
W | I | I | H | A | S | Q | U | Y | N |
W | V | L | E | T | R | A | P | E | Z |
L | Y | B | H | R | E | O | H | F | M |
O | T | R | G | C | T | C | E | K | F |
B | P | Y | E | H | A | H | K | F | S |
A | W | T | P | R | Q | T | X | R | I |
E | A | O | D | J | I | M | I | F | S |
Hast du alle Vierecke gefunden? Falls du nicht auf alle gekommen bist, findest du hier die Lösung.
Vorlage:Versteckt
5.Aufgabe
In dieser Aufgabe wollen wir herausfinden, wieviel Symmetrieachsen jedes der Vierecke hat.
Ordne den Vierecken ihren Namen und das Bild ihrer Symmetrieachsen zu. Dazu musst du die Bilder mit der linken Maustaste ziehen und fallenlassen, wenn der Hintergrund rot wird. Viel Spaß!
Überprüfe, ob du alle Symmetrieachsen gefunden hast.
Vorlage:Versteckt
Achsensymmetrische Vierecke:
- 1. Fall: Die Symmetrieachse verläuft durch die gegenüberliegenden Eckpunkte des Vierecks (Drachen, Raute).
- 2. Fall: Die Symmetrieachse geht durch die Mittelpunkte gegenüberliegender, paralleler Seiten eines Vierecks (Rechteck, Trapez).
- Beim Quadrat trifft sowohl Fall 1, als auch Fall 2 zu.
6.Aufgabe
Du kennst jetzt alle achsensymmetrsichen Vierecke und weißt, wieviel Symmetrieachsen sie haben. Kannst du auch folgende Fragen dazu richtig beantworten? Dabei können auch mehrere Antwortmöglichkeiten richtig sein.
Die Raute hat ...?
Welches Viereck hat vier gleich lange Seiten?
Welche Vierecke haben mehr als eine Symmetrieachse?
Bei welchem Viereck stehen die Symmetrieachsen senkrecht aufeinander?
Bei welchem Viereck verlaufen die Symmetrieachsen durch die Seitenmitten?
Hat du alle Fragen richtig beantwortet? Dann geht´s jetzt zur nächsten Station.
3.Station:Achsensymmetrische Dreiecke
Es gibt 2 achsensymmetrische Dreiecke. Mal sehen, ob du herausfindest, wie sie heißen.
7.Aufgabe
Ziehe am Punkt C. Wann wird das Dreieck achsensymmetrisch? Wieviele Symmetrieachsen hat das Dreieck?
Die Datei [INVALID] wurde nicht gefunden.
Versuche die Fragen richtig zu beantworten! Klicke dabei entweder auf Richtig oder Falsch!
Na kannst du dir denken, wie dieses Dreick heißt?
Hier findest du den Merksatz! Vorlage:Versteckt
8.Aufgabe
Drei der achsensymmetrischen Vierecke können durch ihre Diagonalen in gleichschenklige Dreiecke zerlegt werden. Um welche Vierecke handelt es sich? Zeichne sie dir in dein Heft und zähle wieviel Dreiecke du in jedem Viereck entdeckst!
Hier findest du die Lösung! Vorlage:Versteckt
9.Aufgabe
Es gibt noch ein achsensymmetrisches Dreieck. Dabei handelt es sich um einen Spezialfall des gleichschenkligen Dreiecks.
Finde die unverdrehte Lösung zu den verdrehten Wörtern! Achte dabei auf Rechtschreibfehler.
Bei diesem Dreieck sind alle Seiten gleich lang. Es wird daher Dreieck genannt.
Dabei können je zwei Seiten des Dreiecks die sein. Im gleichseitigen Dreick gibt es daher drei .
Außerdem sind alle drei gleich groß. Aus der Innenwinkelsumme im Dreieck folgt, dass die Winkel das Maß 60° besitzen.
Konntest du zu allen Wörtern die richtige Lösug finden? Dann weißt du ja jetzt, wie das Dreieck heißt. Super!
Hier findest du den Merksatz! Vorlage:Versteckt