Textaufgaben/Wiederholung - Gleichungen lösen: Unterschied zwischen den Versionen
Main>Karl Kirst K (hat „Mathematik-digital/Lernpfad Textaufgaben/Wiederholung - Gleichungen lösen“ nach „Mathematik-digital/Textaufgaben/Wiederholung - Gleichungen lösen“ verschoben: Redundanz; jetzt kürzer) |
K (61 Versionen importiert) |
(kein Unterschied)
|
Version vom 19. August 2018, 14:25 Uhr
- Wiederholung Gleichungen lösen
- Zahlenrätsel
- Altersrätsel
- Aus der Geometrie
- Verteilungsaufgaben
- Wissenstest
Du sollst in diesem Kapitel noch einmal üben, was Gleichungen sind und wie man diese löst.
Einführung
Gleichungen wie
x + 8 = 12
4x - 5 = 3x + 2 oder auch
(x + 4) · 2 = 3x
nennt man lineare Gleichungen.
Zur Bestimmung der Lösung wird die Gleichung äquivalent umgeformt, bis du die Lösung ablesen kannst. Durch äquivalente Umformungen ändert sich die Lösungsmenge nicht. Solche Umformungen sind Addition und Subtraktion derselben Zahl oder desselben Terms auf beiden Seiten der Gleichung oder Multiplikation und Division beider Seiten mit derselben Zahl.
Du siehst, Ziel der Umformungen ist es, so zu sortieren, dass die Terme mit x auf der einen Seite und alle anderen Zahlen auf der anderen Seite der Gleichung stehen. Schreibe dir nun das Anschauungsbeispiel und den Merktext in dein Übungsheft.
- Vereinfachen: eventuell Klammern auflösen, ggf. zusammenfassen
- Sortieren: durch äquivalente Umformungen alle x auf eine Seite und alle Zahlen auf die andere Seite bringen
- x berechnen
- Probe
- Lösungsmenge notieren
Anfänger
Welche Zahl erfüllt die Gleichung?
2 + 4x = 58 | 14 () |
2y + ¼ = ¾ | 0,25 () |
8 – 2x = 4 | 2 () |
2 + z/5 = 1/2 | -7,5 () |
5z - 7 = -2z | 1 () |
Begründe deine Antwort und stelle die falschen Umformungen in deinem Heft richtig.
Fortgeschrittene
7x – 8 – 12 – 3x = 2x | |
2y – 3y + 5y – 24 = 0 | |
4,5a + 12,5 = 7a | |
2,5x – 14,4 + 1,5x + 9,2 = 1,5x + 24,8 | |
5x – 14 + 4x + 10 = 5x + 24 |
A = ab/2 | b=? | |
u = 2a + 2b | b=? | |
x/a – b = c | x=? |
Experten
4n – 9,1 + 1,1n + 4,3 = 1,2n + 56,5 + 2,3n + 8,7 | 43,75() |
¼ x – 14 ½ + ½ x + 9 ¼ = ½ x + 24 ½ | 119() |
10 – 3x +2(5x – 2) = 7(x + 5) – 3x – 5 | 8() |
(x – 6)(x + 6) = x(x + 9) | -4() |
(ax + b)/c = d | |
ax/c + b = d |
S = 12 * L |
In dieser Schule gibt es zwölf mal so viele Schüler wie Lehrer
|
zurück zur Kapitelübersicht
weiter zu Kapitel 2: Zahlenrätsel