Nachricht für neue Nutzer.

Nachricht für engagierte Nutzer.

Sinus- und Kosinusfunktion/2.2 Kosinusfunktion: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
 
(Eine dazwischenliegende Version von einem anderen Benutzer wird nicht angezeigt)
Zeile 17: Zeile 17:
Halte deine Erkenntnisse nun schriftlich fest:
Halte deine Erkenntnisse nun schriftlich fest:


{{Box|Aufgabe - 2.2 Kosinusfunktion|Bearbeite den zugehörigen Auftrag auf dem Arbeitsblatt.|Arbeitsmethode}}
{{Box|Aufgabe - 2.2 Kosinusfunktion|Bearbeite den zugehörigen Auftrag auf dem [[Media:AB zum Lernpfad Sinus-und Kosinusfunktion.docx|Arbeitsblatt]].|Arbeitsmethode}}


<br>
<br>


{{Box-spezial
{{Box
|Titel= Frage
|Titel= Frage
|Inhalt= Überlege: Was könnte das bedeuten?
|Inhalt= Überlege: Was könnte das bedeuten?
<math> cos(-\frac{\pi}{2})  </math>    oder  <math> cos(410^\circ) </math>
<math> cos(-\frac{\pi}{2})  </math>    oder  <math> cos(410^\circ) </math>
Schreibe die Lösung (gerne auch in eigenen Worten) in dein Schulheft.
Schreibe die Lösung (gerne auch in eigenen Worten) in dein Schulheft.
|Farbe=   #cccccc     
|Klasse= Frage
|Icon= {{Icon question}}   
}}
}}



Aktuelle Version vom 6. Dezember 2024, 22:20 Uhr

Station 2: Sinusfunktion und Kosinusfunktion

2.2 Kosinusfunktion

Üben

Versuche dir nochmal klarzumachen, wie die Kosinus-Funktion aus dem Einheitskreis entsteht. Dazu übertragen wir die Bogenlänge b auf die x-Achse (s. grüne Linie). Nun tragen wir die Kosinuswerte, die zum eingestellten Winkel gehören, als y-Werte ein. Durch Klick auf die Checkbox „Kosinuswert als Punkt einer Funktion“ kannst du die einzelnen Funktionswerte anzeigen lassen. Schalte die Spur des Punktes A ein, um die Funktion zu zeichnen.

Halte deine Erkenntnisse nun schriftlich fest:

Aufgabe - 2.2 Kosinusfunktion
Bearbeite den zugehörigen Auftrag auf dem Arbeitsblatt.


Frage

Überlege: Was könnte das bedeuten? oder

Schreibe die Lösung (gerne auch in eigenen Worten) in dein Schulheft.



Teste, ob du alles verstanden hast!


Üben

Kosinusfunktion verstanden?


So, nun hast du alles wiederholt, was wir schon besprochen haben. Jetzt kommt was neues. Du darfst gespannt sein! :)