Vektorrechnung/WHG Q1 Skalare Multiplikation: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
K (Vektornotation verwendet)
Markierung: 2017-Quelltext-Bearbeitung
 
(7 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt)
Zeile 1: Zeile 1:
__NOCACHE__
Sie sehen hier zwei Vektoren <math>\vec{a}</math> und <math>\vec{b}</math> sowie einen Schieberegler für ein sogenanntes "Skalar" <math>t</math>.
Sie sehen hier zwei Vektoren <math>\vec{a}</math> und <math>\vec{b}</math> sowie einen Schieberegler für ein sogenanntes "Skalar" <math>t</math>.
<br>
<br>
Zeile 6: Zeile 8:
|Aufgabe
|Aufgabe
|
|
* Verändern Sie den Wert des Skalars <math>t</math> durch Ziehen am Schieberegler. Versuchen Sie mit Hilfe der Darstellung eine Rechenvorschrift für die skalare Multiplikation (auch Skalarmultiplikation) eines Vektors mit einer Zahl anzugeben und notieren Sie diese.
* Verändern Sie den Wert des Skalars <math>t</math> durch Ziehen am Schieberegler. Geben Sie mit Hilfe der Darstellung eine Rechenvorschrift für die skalare Multiplikation (auch Skalarmultiplikation genannt) eines Vektors mit einer Zahl an und notieren Sie diese.
 
{{Lösung versteckt|Betrachten Sie zunächst Vektoren mit ganzzahligen Einträgen.|Hilfe 1 anzeigen|Hilfe 1 verbergen}}
{{Lösung versteckt|Finden Sie zunächst einen Zusammenhang zwischen den jeweils ersten Einträgen der Vektoren.|Hilfe 2 anzeigen|Hilfe 2 verbergen}}
* Für welche Werte von <math>t</math> haben beide Vektoren dieselbe Orientierung?
* Für welche Werte von <math>t</math> haben beide Vektoren dieselbe Orientierung?
 
{{Lösung versteckt|
Für <math>t>0</math> haben beide Vektoren dieselbe Orientierung.}}
* Für welchen Wert von <math>t</math> wird <math>\vec{b}</math> zum Gegenvektor von <math>\vec{a}</math>?
* Für welchen Wert von <math>t</math> wird <math>\vec{b}</math> zum Gegenvektor von <math>\vec{a}</math>?
{{Lösung versteckt|
Für <math>t=-1</math> wird <math>\vec{b}</math> zum Gegenvektor von <math>\vec{a}</math>.}}
|Arbeitsmethode}}
|Arbeitsmethode}}
|
|

Aktuelle Version vom 24. April 2022, 10:43 Uhr


Sie sehen hier zwei Vektoren und sowie einen Schieberegler für ein sogenanntes "Skalar" .

Aufgabe
  • Verändern Sie den Wert des Skalars durch Ziehen am Schieberegler. Geben Sie mit Hilfe der Darstellung eine Rechenvorschrift für die skalare Multiplikation (auch Skalarmultiplikation genannt) eines Vektors mit einer Zahl an und notieren Sie diese.
Betrachten Sie zunächst Vektoren mit ganzzahligen Einträgen.
Finden Sie zunächst einen Zusammenhang zwischen den jeweils ersten Einträgen der Vektoren.
  • Für welche Werte von haben beide Vektoren dieselbe Orientierung?
Für haben beide Vektoren dieselbe Orientierung.
  • Für welchen Wert von wird zum Gegenvektor von ?
Für wird zum Gegenvektor von .
GeoGebra


Ein Skalar ist eine mathematische Größe, die allein durch die Angabe eines Zahlenwertes vollständig beschrieben ist.

Zum Beispiel ist die Aussage „Wir treffen uns in einer Stunde“ völlig ausreichend, um den gewünschten Zeitpunkt durch eine Zahl und eine Einheit zu beschreiben.

Hingegen ist die Aussage „Wir treffen uns in 500 m Entfernung von hier“ nicht ausreichend, da eine Richtungsangabe fehlt.