Zentrische Streckung/Abbildung durch zentrische Streckung/2.Station Fortsetzung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
(Fortsetzung 2. Station)
 
Keine Bearbeitungszusammenfassung
 
(34 dazwischenliegende Versionen von 4 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
:Um herauszufinden was das k bedeutet, musst du dir jetzt bei dieser zentrischen Streckung anschauen, wie
__NOTOC__
:sich die Streckenlängen verändern, wenn du k veränderst. Dazu musst du dir die Streckenlängen anzeigen lassen.
{{Navigation verstecken
<br>
|{{Abbildungen durch zentrische Streckung}}
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;">
|Lernschritte einblenden
{| <br>
|Lernschritte ausblenden
|<ggb_applet height="400" width="850" showResetIcon="true" filename="Porzelt_Streckungsfaktor.ggb" />||'''Was verändert sich? Orientiere dich dabei an diesen Fragen:'''
}}
<quiz display="simple">


{'''Wie verändert sich die Streckenlänge <span style="text-decoration: overline;">ZB</span>?'''}
+Sie bleibt immer gleich.
-Sie ist variabel.


{'''Wie verändert sich die Streckenlänge <span style="text-decoration: overline;">ZB'</span>?'''}
=Fortsetzung der 2. Station: Streckungsfaktor=
-Sie bleibt immer gleich.
+Sie ist variabel.


{'''Wie verhält sich k?'''}
Bei dieser zentrischen Streckung musst du dir anschauen, wie sich die Streckenlängen verändern, wenn du k veränderst. Lass dir dafür die Streckenlängen anzeigen!<br>Was verändert sich? Orientiere dich dabei an den unter dem Applet stehenden Fragen! Überlege genau, denn es können mehrere Antworten richtig sein!
-Es bleibt immer gleich.
+Es ist variabel.


</quiz>
<ggb_applet height="260" width="830" showreseticon="true" id="harvafzy" />
|}
</div>
<br>
:Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
:In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.
<br>
:'''Arbeitsauftrag:'''
:''1. Betrachte zunächst nur die linke Tabelle und stelle eine Vermutung auf, wie sich die Länge von <span style="text-decoration: overline;">ZB'</span> ändert im Vergleich zur Länge von <span style="text-decoration: overline;">ZB</span>?
:(Tipp: Betrachte auch den Wert von k!)
:''2. Vergleiche die Zeilen mit der selben Hintergrundfarbe! Was haben sie gemeinsam? Was sind die Unterschiede?''
{|
|
{| {{Prettytable}}
|- style="background-color:#8DB6CD"
! k !! <span style="text-decoration: overline;">ZB</span> !! <span style="text-decoration: overline;">ZB'</span>
|- style="background-color:#CDB5CD"
! 2 !! 4 !! 8
|- style="background-color:#CAFF70"
! 1.5 !! 4 !! 6
|- style="background-color:#EEA2AD"
! 1 !! 4 !! 4
|- style="background-color:#C6E2FF"
! 0.5 !! 4 !! 2
|-
| 0 || 4 || 0
|}


||
{| {{Prettytable}}
|- style="background-color:#8DB6CD"
! k !! <span style="text-decoration: overline;">ZB</span> !! <span style="text-decoration: overline;">ZB'</span>
|- style="background-color:#CDB5CD"
! -2 !! 4 !! 8
|- style="background-color:#CAFF70"
! -1.5 !! 4 !! 6
|- style="background-color:#EEA2AD"
! -1 !! 4 !! 4
|- style="background-color:#C6E2FF"
! -0.5 !! 4 !! 2
|-
| 0 || 4 || 0
|}
|}
<br>
:Hier kannst du deine Vermutung mit der von Dia vergleichen:
:{{Versteckt|
1. <math>\overline{ZB'}</math> ist k-mal so lang wie <math>\overline{ZB}</math>.
2. Die Längen der Strecken <math>\overline{ZB}</math> und <math>\overline{ZB'}</math> bleiben gleich, wenn sich das Vorzeichen von k ändert.}}
<br>
<div style="border: 2px solid #00CD00; background-color:#ffffff; padding:7px;">
:'''Dia ist nach ihren Vermutungen total verwirrt. Sie versteht nicht warum der Wert von <span style="text-decoration: overline;">ZB'</span> gleich bleibt, wenn sich das Vorzeichen von k ändert.'''
:'''Vielleicht kannst du ihr helfen, indem du ihre Fragen beantwortest:'''
<br>
<quiz display="simple">
<quiz display="simple">


{Kann eine Streckenlänge ein negatives Vorzeichen haben?}
{'''Wie lang ist <span style="color:#660000"><span style="text-decoration: overline;">ZB'</span></span>, wenn k = 2 ist?'''}
+nein
+<span style="text-decoration: overline;">ZB'</span> ist 8 LE lang.
-ja
-<span style="text-decoration: overline;">ZB'</span> ist 6 LE lang.
-<span style="text-decoration: overline;">ZB'</span> ist 4 LE lang.
 
{'''Wie lang ist <span style="color:#ff6600"><span style="text-decoration: overline;">ZB</span></span>, wenn k = -1 ist?'''}  
+<span style="text-decoration: overline;">ZB</span> ist 4 LE lang.
-<span style="text-decoration: overline;">ZB</span> ist 6 LE lang.
-<span style="text-decoration: overline;">ZB</span> ist 8 LE lang.
 


{Wie kann man eine negative Zahl in eine positive Zahl umwandeln, sodass der Wert '''gleich''' bleibt,
{'''Wie lang ist <span style="color:#660000"><span style="text-decoration: overline;">ZB'</span></span>, wenn k = 3 ist?'''}
sich jedoch aber eine positive Zahl '''nicht''' in eine negative Zahl umwandelt?}
+<span style="text-decoration: overline;">ZB'</span> ist 12 LE lang.
-durch Quadrieren
-<span style="text-decoration: overline;">ZB'</span> ist 6 LE lang.
+mit Hilfe von Betragsstrichen
-<span style="text-decoration: overline;">ZB'</span> ist 8 LE lang.
-durch Multiplikation mit -1
 
 
{'''Für welches k ist <span style="color:#660000"><span style="text-decoration: overline;">ZB'</span></span> = 6 LE lang?'''}  
+Für k = 1,5.
+Für k = -1,5.
-Für k = 2.
-Für k = -2,5.


</quiz>
</quiz>
Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.<br>
<br>
{{Box|1=Analysiere die Tabellen|2=
''Betrachte die Tabellen und überlege dir, wie sich die Länge von <span style="color:#660000"><span style="text-decoration: overline;">ZB'</span></span> im Vergleich zur Länge von <span style="color:#ff6600"><span style="text-decoration: overline;">ZB</span></span> in Abhängigkeit von <math>\vert</math>k<math>\vert</math> ändert!
<div class="grid">
<div class="width-1-2">
{{{!}} class="wikitable"
{{!}}-
! k !! <span style="color:#ff6600"><math>\overline{ZB}</math></span> !! <span style="color:#660000"><math>\overline{ZB^{'}}</math></span>
{{!}}- style="background-color:#00ff00"
{{!}} 2 {{!}}{{!}} 4 {{!}}{{!}} 8
{{!}}- style="background-color:#ffff00"
{{!}} 1.5 {{!}}{{!}} 4 {{!}}{{!}} 6
{{!}}- style="background-color:#EE00ee"
{{!}} 1 {{!}}{{!}} 4 {{!}}{{!}} 4
{{!}}- style="background-color:#436eee"
{{!}} 0.5 {{!}}{{!}} 4 {{!}}{{!}} 2
{{!}}- style="background-color:#cfcfcf"
{{!}} 0 {{!}}{{!}} 4 {{!}}{{!}} 0
{{!}}}
</div>
<div class="width-1-2">
{{{!}} class="wikitable"
{{!}}-
! k !! <span style="color:#ff6600"><math>\overline{ZB}</math></span> !! <span style="color:#660000"><math>\overline{ZB^{'}}</math></span>
{{!}}- style="background-color:#00ff00"
{{!}} -2 {{!}}{{!}} 4 {{!}}{{!}} 8
{{!}}- style="background-color:#ffff00"
{{!}} -1.5 {{!}}{{!}} 4 {{!}}{{!}} 6
{{!}}- style="background-color:#EE00ee"
{{!}} -1 {{!}}{{!}} 4 {{!}}{{!}} 4
{{!}}- style="background-color:#436eee"
{{!}} -0.5 {{!}}{{!}} 4 {{!}}{{!}} 2
{{!}}- style="background-color:#cfcfcf"
{{!}} -0 {{!}}{{!}} 4 {{!}}{{!}} 0
{{!}}}
</div>
</div>
<br>
:Prima! Dank dir versteht jetzt Dia, wie die Werte für <span style="text-decoration: overline;">ZB'</span> entstehen.
:Mit deiner Hilfe und ihrer Vermutungen kann sie eine allgemeingültige Aussage machen.
:Teste durch Einsetzen der richtigen Wörter, ob auch du dahinter gekommen bist:
<div class="lueckentext-quiz">
Die Länge von '''<span style="text-decoration: overline;">ZB</span>''' ist '''|k|-mal''' so lang wie die Länge von '''<span style="text-decoration: overline;">ZB'</span>'''.
</div>
</div>


{{Lösung versteckt|1=
<math>\overline{ZB'}</math> ist <math>\mid k \mid</math>-mal so lang wie <math>\overline{ZB}</math>.}}
|3=Arbeitsmethode}}
'''''Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!'''''
{{Box|1=Merke|2=
'''k''' bezeichnet man als den '''Streckungsfaktor'''. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
|3=Merksatz}}
[[Bild:Porzelt_lobenderPanto2.jpg]]
<br>
<br>
:Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
:'''k''' bezeichnet man als den '''Streckungsfaktor'''. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
</div>
<br>
<br>
<div align="right">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]]</div>
 
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/Hier kannst du weitere Beispiele einer zentrischen Streckung sehen|Zurück zum Exkurs: Weitere Beispiele einer zentrischen Streckung]]</div>
{{Fortsetzung|weiter=Berechnung der Streckenlängen und des Streckungsfaktors|weiterlink=../3.Station}}
[[Kategorie:Interaktive Übung]]
[[Kategorie:GeoGebra]]

Aktuelle Version vom 23. April 2022, 16:06 Uhr



Fortsetzung der 2. Station: Streckungsfaktor

Bei dieser zentrischen Streckung musst du dir anschauen, wie sich die Streckenlängen verändern, wenn du k veränderst. Lass dir dafür die Streckenlängen anzeigen!
Was verändert sich? Orientiere dich dabei an den unter dem Applet stehenden Fragen! Überlege genau, denn es können mehrere Antworten richtig sein!

GeoGebra

1 Wie lang ist ZB', wenn k = 2 ist?

ZB' ist 8 LE lang.
ZB' ist 6 LE lang.
ZB' ist 4 LE lang.

2 Wie lang ist ZB, wenn k = -1 ist?

ZB ist 4 LE lang.
ZB ist 6 LE lang.
ZB ist 8 LE lang.

3 Wie lang ist ZB', wenn k = 3 ist?

ZB' ist 12 LE lang.
ZB' ist 6 LE lang.
ZB' ist 8 LE lang.

4 Für welches k ist ZB' = 6 LE lang?

Für k = 1,5.
Für k = -1,5.
Für k = 2.
Für k = -2,5.


Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst. In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.

Analysiere die Tabellen

Betrachte die Tabellen und überlege dir, wie sich die Länge von ZB' im Vergleich zur Länge von ZB in Abhängigkeit von k ändert!

k
2 4 8
1.5 4 6
1 4 4
0.5 4 2
0 4 0
k
-2 4 8
-1.5 4 6
-1 4 4
-0.5 4 2
-0 4 0




ist -mal so lang wie .

Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!

Merke
k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.

Porzelt lobenderPanto2.jpg