Achsensymmetrie: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung |
K (- ZUM2Edutags) Markierung: 2017-Quelltext-Bearbeitung |
||
(3 dazwischenliegende Versionen von einem anderen Benutzer werden nicht angezeigt) | |||
Zeile 64: | Zeile 64: | ||
In diesem Geogebra-Applet seht ihr zwei zueinander senkrechte Symmetrieachsen. Bewegt die beschrifteten Punkte. Was passiert bezüglich der Symmetrie? | In diesem Geogebra-Applet seht ihr zwei zueinander senkrechte Symmetrieachsen. Bewegt die beschrifteten Punkte. Was passiert bezüglich der Symmetrie? | ||
< | <ggb_applet height="400" width="500" showMenuBar="false" showResetIcon="true" filename="Achsensymmetrie2.ggb" /> | ||
Zeile 149: | Zeile 147: | ||
{{Autoren|Martina Ott, Christoph Lembach, Angela Röhrig, Manuel Schüttler, Milena Tieves}} | |||
__NOEDITSECTION__ | |||
[[Kategorie:Mathematik]] | [[Kategorie:Mathematik]] | ||
[[Kategorie:Sekundarstufe 1]] | [[Kategorie:Sekundarstufe 1]] | ||
Zeile 157: | Zeile 157: | ||
[[Kategorie:Achsensymmetrie]] | [[Kategorie:Achsensymmetrie]] | ||
[[Kategorie:Lernpfad]] | [[Kategorie:Lernpfad]] | ||
[[Kategorie: | [[Kategorie:Mathematik-digital]] | ||
[[Kategorie:Interaktive Übung]] | [[Kategorie:Interaktive Übung]] | ||
[[Kategorie: | [[Kategorie:R-Quiz]] | ||
Aktuelle Version vom 17. Dezember 2021, 10:35 Uhr
Aufgabe 1
Schaut euch die Figuren an und überlegt, ob an ihnen etwas besonders ist. Klickt auf das Bild zum Vergrößern.
(Hinweis: Die gesuchte "Besonderheit" findet ihr in Figur 3 nicht.)
Zeichnet Figur 1 und Figur 4 in euer Heft und überlegt, ob es Geraden gibt mit denen ihr die Figuren so teilen könnt, dass sie aufeinanderliegen.
Ihr könnt auch versuchen, die Figuren aus einem Blatt Papier auszuschneiden, und sie so zu falten, dass keine Seite unter der anderen hervorragt. Öffnet das Papier wieder, nachdem euch das gelungen ist und betrachtet die Linie der Faltkante. Sie sollte genauso verlaufen wie die Geraden in eurem Heft.
Die Gerade, die eine Figur deckungsgleich halbiert, heißt Symmetrieachse.
Gibt es mindestens eine solche Achse, heißt die Figur achsensymmetrisch.
Aufgabe 2
Aufgabe 3
Aufgabe 4
In diesem Geogebra-Applet seht ihr zwei zueinander senkrechte Symmetrieachsen. Bewegt die beschrifteten Punkte. Was passiert bezüglich der Symmetrie?
Die Datei [INVALID] wurde nicht gefunden.
Aufgabe 5
Nun betrachten wir regelmäßige Vielecke (d.h. Vielecke, in denen alle Winkel und alle Seiten gleich sind). In folgender Tabelle seht ihr, wie viele Symmetrieachsen ein regelmäßiges Vieleck hat:
Anzahl der Ecken | 3 | 4 | 5 | 6 | ... | n |
---|---|---|---|---|---|---|
Anzahl der Symmetrieachsen | 3 | 4 | 5 | 6 | ... | n |
Winkel | 3 mal 60° | 4 mal 90° | 5 mal 108° | 6 mal 120° | ... | n mal 180°*(n-2)/n |
Erstellt euch mit Geogebra regelmäßige Vielecke und versucht alle Symmetrieachsen zu finden.
Zusatzaufgabe:
Findet ein geometrisches Objekt mit unendlich vielen Symmetrieachsen!
Aufgabe 6
Links
Hier findet ihr noch mehr zum Thema Achsensymmetrie:
Hier findet ihr das Programm Geogebra mit dem die auf dieser Seite verwendeten Bilder erstellt worden sind. Es handelt sich dabei um ein sehr hilfreiches Programm, das euch helfen kann, Geometrie besser zu verstehen.