Alles rund um Quadratische Funktionen: Unterschied zwischen den Versionen
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Keine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 255: | Zeile 255: | ||
|Arbeitsmethode}} | |Arbeitsmethode}} | ||
{{Box|7. Finde die Paare| Wandle die Funktionen <math>g, f, o, m, p</math> und <math>n</math> in deinem Heft in die Normalenform um und die Funktionen <math>j, l, k, i</math> und <math>h</math> in die Scheitelpunktform. Verbinde anschließend die Paare. Hinweis: Drei Funktionen haben keinen Partner. | {{Box|7. Finde die Paare | ||
|Wandle die Funktionen <math>g, f, o, m, p</math> und <math>n</math> in deinem Heft in die Normalenform um und die Funktionen <math>j, l, k, i</math> und <math>h</math> in die Scheitelpunktform. Verbinde anschließend die Paare. Hinweis: Drei Funktionen haben keinen Partner. | |||
{{LearningApp|app=pghqpthwj19|width=100%|height=400px}} | {{LearningApp|app=pghqpthwj19|width=100%|height=400px}} | ||
|Arbeitsmethode}} | |Arbeitsmethode}} |
Version vom 27. Oktober 2019, 15:34 Uhr
In diesem Lernpfad geht es darum, dein Wissen im Bereich quadratischer Funktionen zu vertiefen.
Dazu werden dir Informationen und Aufgaben zur Scheitelpunktform, der Umwandlung zwischen Scheitelpunktform und Normalform sowie zur Berechnung von Nullstellen bereitgestellt. Zusätzlich erwarten dich zwei Anwendungsaufgaben, in welchen du die zuvor gelernten Inhalte testen kannst.
In diesem Lernpfad findest du Aufgaben mit einem *. Bei diesen handelt es sich um Forderaufgaben. Aufgaben mit ** sind anspruchsvolle Knobelaufgaben. Hat eine Aufgabe kein *, dann ist die Aufgabe zur Wiederholung und Vertiefung der Inhalte geeignet.
Scheitelpunktform
Wir schauen uns die Funktion an. Funktionen dieser Art heißen quadratische Funktionen. Der Graph einer solchen Funktion ist eine Parabel. Der höchste bzw. der tiefste Punkt eines solchen Funktionsgraphen heißt Scheitelpunkt. Liegt die Funktionsgleichung in der Scheitelpunktform vor, wie es hier der Fall ist, dann kann der Scheitelpunkt direkt aus der Funktionsgleichung abgelesen werden. Der Parameter ist die -Koordinate und der Parameter ist die -Koordinate des Scheitelpunkts. .
Ist der Parameter kleiner als Null (), dann ist der Graph der Funktion nach unten geöffnet.
Ist größer als Null (), dann ist der Graph von nach oben geöffnet.
Ist größer als Eins () oder kleiner als minus Eins (), dann sieht der Graph von schmaler aus. Man sagt, dass in diesem Fall der Graph gestreckt wird.
Liegt zwischen minus Eins und Eins (), dann sieht der Graph von breiter aus. Man sagt, dass in diesem Fall der Graph gestaucht wird.
Ist größer als Null (), dann wird der Graph von nach rechts verschoben.
Ist kleiner als Null (), dann wird der Graph von nach links verschoben.
Ist kleiner als Null (), dann wird der Graph von nach unten verschoben.
Ist größer als Null (), dann wird der Graph von nach oben verschoben.
Hier kannst du den Einfluss der einzelnen Parameter der Scheitelpunktform auf den Funktionsgraphen erkunden. Bewege dafür jeweils die Schieberegler und beobachte wie sich der Graph von verändert.
Gegeben seien die Funktion und die Punkte
und
.
a) Überprüfe rechnerisch, ob die Punkte und auf dem Graphen von liegen.
b) Zeichne den Graphen der Funktion und die Punkte in dein Heft. Vergleiche anschließend die Ergebnisse aus a) mit deiner Zeichnung
Ordne die folgenden Funktionsgleichungen den zugehörigen Graphen zu. Hinweis: Du kannst die Bilder der Funktionsgraphen vergrößern, indem du mit der Maus auf diese klickst.
Betrachtet man die Funktionsgleichung , so beschreibt die Streckung (falls ) oder die Stauchung (falls ). Man geht vom Scheitelpunkt aus um eine Einheit nach links oder rechts und dann um Einheiten nach oben (falls negativ ist nach unten).
Falls ist, oder generell ein Bruch ist, kann dies manchmal schwierig sein, da sich zum Beispiel nicht so einfach ablesen lässt. Hierfür kann man die Normalparabel betrachten. Sinnvoll ist es nun den Nenner, also einzusetzen. Somit erhält man . Die erhaltene Zahl muss man nun mit dem Bruch multiplizieren . Man geht nun vom Scheitelpunkt um die eingesetzte Zahl nach links oder rechts () und um die am Ende erhaltene Zahl nach oben (), oder nach unten falls negativ ist. (Wenn du hier noch Probleme hast scrolle hoch zum GeoGebra-Applet und verschiebe den Regler für . Beobachte dabei wie sich der Graph verändert.)Beispiele sind:
hat ihren Scheitelpunkt bei
hat ihren Scheitelpunkt bei
Stell die zugehörigen Funktionsgleichungen in Scheitelpunktform auf. Wähle im Anschluss die richtige Lösung aus (Du musst in der App runterscrollen).
Um den Parameter zu bestimmen gibt es verschiedene Möglichkeiten.
Möglichkeit 1: Du kannst einen beliebigen weiteren Punkt aus dem Graphen ablesen und in die Funktionsgleichung einsetzen. Im Anschluss musst du nur noch die Gleichung nach auflösen. Bei Bedarf kannst Du gerne dein Heft benutzen, um dir Rechenschritte zu notieren.
Möglichkeit 2: Alternativ kannst du den Parameter auch direkt aus dem Graphen ablesen: Gehst du vom Scheitelpunkt aus um eine Einheit nach rechts, so entspricht der Anzahl an Einheiten, die du nach oben (positives Vorzeichen) oder nach unten (negatives Vorzeichen) gehen musst, bis du wieder auf dem Graphen bist.
Im folgenden sind je der Scheitelpunkt und ein weiterer Punkt einer Funktion gegeben. Stelle mit diesen Informationen die zugehörige Funktionsgleichung in Scheitelpunktform auf (im Heft).
a) Wie lautet die Funktionsgleichung zu den Punkten und ?
b) Wie lautet die Funktionsgleichung zu den Punkten und ?
c) Wie lautet die Funktionsgleichung zu den Punkten und ?
Setze ein:
Setze ein:
Somit ergibt sich:
Setze ein:
Setze ein:
Somit ergibt sich:
Setze ein:
Setze ein:
Somit ergibt sich:
Jonas wirft einen Stein vom Ufer in einen See. Die Flugbahn des Steins lässt sich mit der quadratischen Funktion beschreiben, wobei die Entfernung des Steins vom Ufer und die Höhe des Steins (jeweils in Meter) beschreibt.
a) Nach wie vielen Metern erreicht der Stein seinen höchsten Punkt?
b) Zeichne die Flugbahn des Steins in dein Heft.
Der Scheitelpunkt liegt bei . Für ist es sinnvoll den Nenner, also in einzusetzen. Somit erhält man . Die erhaltene Zahl muss man nun mit dem Bruch multiplizieren . Man geht nun vom Scheitelpunkt um die eingesetzte Zahl nach links oder rechts () und um die am Ende erhaltene Zahl nach unten (), da die Zahl negativ war. Da somit die Zeichnung recht groß wird, kann man sich auch überlegen eine niedrigere Zahl in einzusetzen. Dies sollte am besten ein Teiler vom Nenner sein, z.B. . Das Vorgehen ist identisch: .
Beachte, dass die Flugbahn erst mit dem Abwurf des Steins beginnt und mit dem Auftreffen des Steins auf die Wasseroberfläche endet. Auf der -Achse trägst du die Wurfweite in Meter ab, auf der -Achse die Höhe des Steins in Meter.c)* In welcher Entfernung von Jonas taucht der Stein ins Wasser ein?
Du musst zunächst die Nullstellen der Funktion bestimmen. An einer dieser Nullstellen trifft der Stein auf die Wasseroberfläche.
Also folgt und . Damit haben wir zwei Nullstellen.
- Die allgemeine Scheitelpunktform lautet .
- Der Parameter ist der -Wert des Scheitelpunktes, wobei man hier immer das Vorzeichen in der Kalmmer umkehren muss.
- Der Parameter ist der -Wert des Scheitelpunktes.
- ist der Scheitelpunkt der Funktion.
- Der Parameter wird als Streckungsfaktor bezeichnet.
- Ist wird die Funktion gestreckt, ist wird die Funktion gestaucht.
- Ist positiv so ist die Parabel nach oben geöffnet, ist negativ so ist sie nach unten geöffnet.
- Wenn man den Streckungsfaktor zum zeichnen nutzen möchte, geht man vom Scheitelpunkt aus um eine Einheit nach links oder rechts und dann um Einheiten nach oben (falls negativ ist nach unten). Falls ist, oder generell ein Bruch ist, kann dies manchmal schwierig sein. Hierfür kann man die Normalparabel betrachten. Sinnvoll ist es nun den Nenner einzusetzen. Die erhaltene Zahl muss man nun mit dem Bruch multiplizieren. Man geht nun vom Scheitelpunkt um die eingesetzte Zahl nach links oder rechts und um die am Ende erhaltene Zahl nach oben, oder nach unten falls negativ ist.
- Hat man nur den Scheitelpunkt und einen weiteren Punkt gegeben und soll die zugehörige Funktionsgleichung aufstellen, so nimmt man sich die allgemeine Form . Hier kann man den Scheitelpunkt einfach einsetzen für und . Als nächstes setzt man den anderen Punkt für und ein und formt nach um.
Umwandlung Scheitelpunktform und Normalform
Bisher hast du dich intensiv mit der Scheitelpunktform beschäftigt. In diesem Abschnitt wirst du auch mit der Normalform einer quadratischen Funktion arbeiten. Diese lautet
- Um die Scheitelpunktform in die Normalform zu überführen benötigst du die ersten beiden Binomischen Formeln.
- Um die Normalform in die Scheitelpunktform zu überführen benötigst du die Methode der quadratischen Ergänzung.
1. Binomische Formel:
2. Binomische Formel:
Somit gilt:
Sei :
- Klammere aus: .
- Teile den Vorfaktor von (also ) durch , also . Dieser Wert ist unser also .
- Wir erhalten also für unsere Klammer in der Scheitelpunktform . Da ist müssen wir in der Normalform einmal addieren und wieder subtrahieren: .
- Wir fassen die Klammer zur binomischen Formel zusammen und setzten . Somit erhalten wir . (Das Vorzeichen von wird hier nicht umgekehrt sondern so übernommen wie es berechnet wurde.)
Fülle den Lückentext aus, indem du auf eine Lücke klickst und die richtige Antwort auswählst.
Wandle die Funktionen und in deinem Heft in die Normalenform um und die Funktionen und in die Scheitelpunktform. Verbinde anschließend die Paare. Hinweis: Drei Funktionen haben keinen Partner.