Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Main>Jan Wörler
(Raumdiagonalen ausgebessert)
Zeile 66: Zeile 66:


[[Bild:diagonale3.png|right|170px]]
[[Bild:diagonale3.png|right|170px]]
Beispielsweise ergibt sich die Länge <math>d</math> der '''Diagonale in einem Quadrat''' der Seitenlänge <math>a=1</math> über den Satz des Pythagoras (<math>a^2 + a^2 = d^2</math>) zu:
Beispielsweise ergibt sich die Länge <math>d</math> der '''Diagonale in einem Quadrat''' der Seitenlänge <math>a=1</math> über den Satz des Pythagoras <math>\left( a^2 \!\,+ a^2 = B^2 \right)</math> zu:
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =d^2 \quad \Rightarrow \quad d = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
:<math>a^2 + a^2 = 2 \cdot a^2 = 2 \cdot 1^2 = 2 =B^2 \quad \Rightarrow \quad B = \pm \sqrt{2} = \pm 2^{\frac 1 2}.</math>
Die Lösung ist <font style="vertical-align:18%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.
Die Lösung ist <font style="vertical-align:15%;"><math>\textstyle d=-\sqrt{2}</math></font> ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.




Auch die Länge der '''Raumdiagonale <math>D</math> im Einheitswürfel ('''das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>d^2 + s^2 = D^2</math>) zu:
Auch die Länge der '''Raumdiagonale <math>C</math> im Einheitswürfel ('''das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: <math>B^2 + \!\,a^2 = D^2</math>) zu:
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = D^2 \quad \Rightarrow \quad D = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
:<math>\sqrt{2}^2 + 1^2 = 2 + 1 = 3 = C^2 \quad \Rightarrow \quad C = \pm \sqrt{3} = \pm 3^{\frac 1 2}.</math>
Die Lösung ist also <math>\textstyle D = \sqrt{3}</math> angeben.
Die Lösung ist also <font style="vertical-align:15%;"><math>\textstyle C = \sqrt{3}</math></font> angeben.


=== Beispiel: Kubikwurzel ===
=== Beispiel: Kubikwurzel ===

Version vom 31. März 2009, 17:37 Uhr


Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen (positiven) Stammbruch der Form mit als Exponenten haben.

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Funktionsgraph kennenlernen

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.

Bezeichungen: Potenzen und Wurzeln

Wir betrachten hier Potenzfunktionen mit ,

Wegen nennt man diese Funktionen auch Wurzelfunktionen. Ihr Definitionsbereich ist (wie die Aufgaben 1 und 2 gezeigt haben) . Beschränkt man sich auf diesen Definitonsbereich, dann ist die n-te Wurzelfunktion mit die Umkehrfunktion zur Potenzfunktion der Bauart und die Umkehrfunktion zu (Näheres zur Umkehrfunktion siehe nächstes Kapitel).

Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:

Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. . Den Grund für diese Bezeichnungen zeigen die folgenden Beispiele:

Beispiel: Quadratwurzeln

Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras zu:

Die Lösung ist ergibt hier keinen Sinn, da wir nur Längen in der realen Welt betrachten.


Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge a=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Die Lösung ist also angeben.

Beispiel: Kubikwurzel

Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:

Einfluss von Parametern

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten


*Zum Weiterdenken: Definitionsbereich der Wurzelfunktionen

(*Zusatzinformation, freilwillige Ergänzung)

Einschränkung auf IR+0

Gelegentlich findet man in Büchern oder auch im Internet folgende Darstellung:

Wegen

erscheint das richtig zu sein, allerdings kann diese Festlegung zu Widersprüchen führen, wie das folgende Beispiel zeigt:


Um solche Fälle von Nicht-Eindeutigkeiten, aber auch um Fallunterscheidungen bei für gerade und ungerade n zu vermeiden, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die nicht-negativen reellen Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.


Maehnrot.jpg Als nächstes erfährst du etwas über Potenzfunktionen, die auch negative Stammbrüchen im Exponenten haben.

Datei:Pfeil.gif   Hier geht es weiter.