Potenzfunktionen - 3. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Main>Jan Wörler
Keine Bearbeitungszusammenfassung
Zeile 19: Zeile 19:


== Potenzen und Wurzeln ==
== Potenzen und Wurzeln ==
Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt ''Wurzelfunktion''.


Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:
Potenzfunktionen der Bauart <math>f(x)=x^{\frac{1}{n}}</math> und Wurzelfunktionen <math>g(x)=\sqrt[n]{x}</math> hängen eng zusammen, denn es gilt:
Zeile 28: Zeile 30:
<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>
<math>\sqrt[n]{x} :\Leftrightarrow \left(\sqrt[n]{x}\right)^n = x</math>


Eine Funktion <math>f</math> mit der Gleichung <math>f(x)=\sqrt[n]{x}</math> mit <math>n \in \mathbb{N}, n\geq2</math> heißt Wurzelfunktion
 


Beispiele:  
Beispiele:  

Version vom 19. Januar 2009, 15:45 Uhr

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleiche mit Funktionen aus Stufe 2

  • Welche Gemeinsamkeiten gibt es? Welche Unterschiede?
  • Gibt es Punkte, die beiden Funktionsscharen gemeinsam sind?

Beschreibe den Definitionsbreich ID der Funktion f(x) = x^(1/n) in Abhängigkeit von n.


Die Datei [INVALID] wurde nicht gefunden.

Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:

Darin ist die n-te Wurzel festgelegt über:


Beispiele:

  • , aber
  • , nicht definiert.
  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.

Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar kann man zum Beispiel wegen

die Wurzelfunktionen zumindest bei ungeradem n sowohl für positive als auch negative x definieren.
Allerdings kann das zu Wiedersprüchen führen; folgende Rechnung zeigt die Problematik:

Um solche Fälle von Uneindeutigkeit zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g(x) derart, dass

, dann gilt: IDg = IR.