Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Vorwissen

Aus ZUM-Unterrichten
< Laplace-Wahrscheinlichkeit wiederholen und vertiefen
Version vom 29. September 2009, 09:31 Uhr von Main>Florian Bogner (Zufallsexperiment)
Wechseln zu: Navigation, Suche

Zufallsexperiment

  Stift.gif   Aufgabe 1.1

Weißt du noch, was genau ein Zufallsexperiment ist? Schreibe es auf!

Roulette.jpg

Versuche dich zu erinnern und schreibe eine möglichst genaue Beschreibung des Begriffs "Zufallsexperiment" auf. Informiere dich wenn nötig in deinen Unterlagen aus der Schule oder recherchiere im Internet danach.


  Stift.gif   Aufgabe 1.2

Welche der folgenden Beispiele sind Zufallsexperimente? <br!> Kreuze die richtigen Antworten an und klicke anschließend auf „prüfen!“

(Ziehung der Lottozahlen) (Schere, Stein, Papier) (!Wettervorhersage) (!Elfmeterschießen im WM-Finale) (dreimaliges Werfen eines Würfels) (ein Marmeladenbrot fällt vom Tisch) (!Benotung deiner Klassenarbeit) (Werfen einer Münze) (Werfen eines gezinkten Würfels) (!Geschwindigkeitsmessung der Polizei) (!physikalisches Experiment)

Hinweis: Du kannst das Multiplechoice-Quiz nochmal versuchen, indem du nach Aufgabe 1.5 die Buttons „Korrektur“ und „Neustart“ anklickst!


  Stift.gif   Aufgabe 1.3

Anna wirft mit ihrem Banknachbar Fritz eine Münze, um zu entscheiden wer morgen das Mathebuch in die Schule mitbringen muss. <br!> Lege für die beiden die oben angesprochenen Versuchsbedingungen vor dem Zufallsexperiment „Münzwurf“ fest.

Durch Markieren der grauen Fläche wird ein Lösungsvorschlag sichtbar: Es wird festgelegt, dass die Münze auf den gebeugten Zeigefinger gelegt und mit dem Daumen in die Luft geschnipst werden soll. Die Münze wird gefangen und auf den Handrücken gelegt. Die Seite gewinnt, welche nach der Landung oben liegt.

Ergebnis und Ereignis

Zur korrekten mathematischen Beschreibung von Zufallsexperimenten benötigt man eine formale Sprache.

In der folgenden Aufgabe, kannst du am Beispiel des Würfelwurfs kontrollieren, ob du die richtige Schreibweise beherrschst.

  Stift.gif   Aufgabe 1.4

Orden die Begriffe, Schreibweisen und Beispiele richtig zu! <br!> Ziehe dazu die grünen Kästchen in die richtige Zeile.

Fallen dir noch mehr Beipiele ein?

(Sollte dieses Quiz auf deinem Computer nicht funktionieren, musst du unter deinen ZUM-Wiki Einstellungen PNG statt HTML als Anzeigeformat von TeX-Umgebungen einstellen!)

Ergebnis 6
Ereignis
Elementarereignis
Ergebnismenge
Gegenereignis
unmögliches Ereignis
Mächtigkeit des Ergebnisraums


Lösungshinweise: Vorlage:Versteckt


  Stift.gif   Aufgabe 1.5

Bestimme für die folgenden vier Zufallsexperimente eine geeignete Ergebnismenge .

Kreuze zur Überprüfung jeweils dessen Mächtigkeit an.

1

Eine Münze und ein Würfel werden gleichzeitig geworfen.

8
12
36

2

Es wird dreimal gewürfelt.

18
56
216

3

Drei Münzen und zwei Würfel werden geworfen.

72
216
288

4

Aus einer Urne, die jeweils fünf blaue, rote und grüne Kugeln enthält, werden nacheinander drei Kugeln gezogen.

9
27
72


Lösungshinweise: Vorlage:Versteckt


  Stift.gif   Aufgabe 1.6

a) Notiere dir für folgende Ergebnismengen alle Ereignisse. Wie viele sind es jeweils? Kannst du ein Gesetz erkennen?


b) Wie viele Ereignisse gibt es bei dem Zufallsexperiment „Werfen von drei Münzen“?

Lösungshinweise: Vorlage:Versteckt


Lösung:

Das vermutete Gesetz lautet:

Vorlage:Kasten grün


b)

Laplace-Wahrscheinlichkeit

Pierre-Simon Laplace.jpg

Pierre-Simon LaplaceWikipedia-logo.png (1749 - 1827) war ein Physiker und Mathematiker, unter anderem auch am Hofe Napoleons. <br!> Er beschäftigte sich mit der Wahrscheinlichkeitsrechnung, vor allem in Verbindung mit dem Glücksspiel.


  Stift.gif   Aufgabe 1.7

Schreibe auf, was man unter den Begriffen Laplace-Experiment, Laplace-Würfel und Laplace-Wahrscheinlichkeit versteht!


Vorlage:Kasten blass


  Stift.gif   Aufgabe 1.8
Pasch.jpg
Anna würfelt mit zwei unterscheidbaren Würfeln.

Wie groß ist die Wahrscheinlichkeit, dass sie einen Pasch würfelt?

Lösungshilfe: Vorlage:Versteckt


Man kann aus der Tabelle prima die Ergebnismenge und das Ereignis „Pasch“ ablesen:
FeldertafelzweiWürfel.png
Man sagt dazu „36-Feldertafel“, auf Grund der Mächtigkeit der Ergebnismenge.





Vorlage:Kasten Mathematik