Integralrechnung/Flächeninhaltsfunktion: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Wechseln zu: Navigation, Suche
Main>Dickesen
Main>Dickesen
Zeile 1: Zeile 1:
==Die Flächeninhaltsfunktion==
+
==Die Flächeninhaltsfunktion <math>F(x)</math>==
 
Zuletzt hast Du gesehen, dass die Berechnung des bestimmten Integrals von Hand sehr aufwendig und umständlich ist. Wünschenswert wäre es also, wenn es eine einfachere Lösung des Problems gäbe. <br>
 
Zuletzt hast Du gesehen, dass die Berechnung des bestimmten Integrals von Hand sehr aufwendig und umständlich ist. Wünschenswert wäre es also, wenn es eine einfachere Lösung des Problems gäbe. <br>
 
Um eine einfachere und bessere Lösung zu finden, kannst Du unten wieder ein Geogebra-Applet benutzen. <br>
 
Um eine einfachere und bessere Lösung zu finden, kannst Du unten wieder ein Geogebra-Applet benutzen. <br>
 
Neben dem Graphen der Funktion <math>f(x)=x^2</math> ist das bestimmte Integral dieser Funktion im Intervall <math>[a; b]</math> abgebildet. Über der oberen Intervallgrenze <math>b</math> ist der Wert des bestimmten Integrals als Zahl und '''Funktionswert''' abgebildet. <br>
 
Neben dem Graphen der Funktion <math>f(x)=x^2</math> ist das bestimmte Integral dieser Funktion im Intervall <math>[a; b]</math> abgebildet. Über der oberen Intervallgrenze <math>b</math> ist der Wert des bestimmten Integrals als Zahl und '''Funktionswert''' abgebildet. <br>
 
{{Aufgaben-M|5|
 
{{Aufgaben-M|5|
# Verschiebe die obere Intervallgrenze mit der Maus. Der Funktionswert (also das bestimmte Integral) wird dabei ebenfalls ständig neu berechnet und eingezeichnet. Es entsteht der Graph einer neuen Funktion, der ''Flächeninhaltsfunktion''.
+
# Verschiebe die obere Intervallgrenze mit der Maus. Der Funktionswert (also das bestimmte Integral) wird dabei ebenfalls ständig neu berechnet und eingezeichnet. Es entsteht der Graph einer neuen Funktion, der ''Flächeninhaltsfunktion'' <math>F(x)</math>.
# Versuche, die Funktionsvorschrift der Flächeninhaltsfunktion zu bestimmen. Zum einfacheren Ablesen von Punkten auf dem Graphen ist ein Gitternetz in das Koordinatensystem eingezeichnet.
+
# Versuche, die Funktionsvorschrift von <math>F(x)</math> zu bestimmen. Zum einfacheren Ablesen der Punkte auf dem Graphen ist ein Gitternetz in das Koordinatensystem eingezeichnet.
 
}}
 
}}
 
<br><br><br>
 
<br><br><br>

Version vom 20. Oktober 2009, 14:10 Uhr

Die Flächeninhaltsfunktion

Zuletzt hast Du gesehen, dass die Berechnung des bestimmten Integrals von Hand sehr aufwendig und umständlich ist. Wünschenswert wäre es also, wenn es eine einfachere Lösung des Problems gäbe.
Um eine einfachere und bessere Lösung zu finden, kannst Du unten wieder ein Geogebra-Applet benutzen.
Neben dem Graphen der Funktion ist das bestimmte Integral dieser Funktion im Intervall abgebildet. Über der oberen Intervallgrenze ist der Wert des bestimmten Integrals als Zahl und Funktionswert abgebildet.
Vorlage:Aufgaben-M