Dunkle Materie

Aus ZUM-Unterrichten
Version vom 19. März 2011, 14:03 Uhr von main>DReuße (Die Seite wurde neu angelegt: „== Welche Materie existiert im All? == '''Direkt sichtbar''' * Nahe Planeten und Monde mit festen Oberflächen: Sie enthalten etwa gleichartige Elemente…“)
(Unterschied) ← Nächstältere Version | Aktuelle Version (Unterschied) | Nächstjüngere Version → (Unterschied)

Welche Materie existiert im All?

Direkt sichtbar

   * Nahe Planeten und Monde mit festen Oberflächen:
     Sie enthalten etwa gleichartige Elemente wie die Erde.
   * Große gasförmige Planeten:
     Sie bestehen größtenteils aus Wasserstoff.
   * Sonne und andere Sterne:
     Sie enthalten Wasserstoff und Helium und nur Spuren anderer Elemente.

Mit Hilfsmitteln registrierbar

   * Staubwolken, die das Licht von Sternen abschirmen.
   * Sterne, die in anderen Spektralbereichen leuchten.

Nicht registrierbar

Die Materie im Weltraum, die nicht beobachtet werden kann, da sie keine elektromagnetische Strahlung emittiert und auch keine sonst sichtbare Strahlung des Hintergrundes absorbiert, nennt man "Dunkle Materie". Auf ihre Existenz wird aus theoretischen Gründen geschlossen oder aus anderen Beobachtungen, die die Wirkung der Schwerkraft dieser Materie zeigen.


Einige Größen und Maße im Weltall

Längen
1 pc = 1 Parsec Entfernung, von der aus der Erdbahnradius unter einem Winkel von 1 Bogensekunde erscheint
1 Lj = 1 Lichtjahr Entfernung, die das Licht in einem Jahr zurücklegt
1 AE = 1 Astronomische Längeneinheit mittlerer Erdbahnradius
Umrechnungen

Massen

Milchstraße: ( Sterne)

  • sichtbarer Durchmesser 30-50 kpc (100-160 kLj)
  • Dicke 0,5 kpc (1600 Lj) (am Kern ca 5 kpc)
  • Masse SM
  • Sonne am Rand mit Abstand vom Zentrum 8,5 kpc (28 kLj)
  • Entfernung zur Andromedagalaxie 700 kpc ( Lj)

Universum: ( Galaxien)

  • Durchmesser kpc, ( Lj),


Was ist dunkle Materie?

Unter dem Begriff „Dunkle Materie“ versteht man die Materie im Weltraum, die nicht direkt beobachtet werden kann, da sie keine elektromagnetische Strahlung emittiert, die mit einem Teleskop auf der Erde empfangen wird, in keinem Spektralbereich, und die auch keine sonst sichtbare Strahlung des Hintergrundes absorbiert. Auf ihre Existenz wird aus Beobachtungen geschlossen, die die Wirkung der Schwerkraft zeigen, oder aus theoretischen Gründen.

Über die Menge der Dunklen Materie gibt es Vermutungen, die bis zum Hundertfachen der beobachtbaren Materie reichen. Man muss sich also das Universum mit einer großen Menge von unsichtbarer Materie gefüllt vorstellen, in die die sichtbaren Objekte als kleine leuchtende Punkte mit geringer Masse eingebettet sind.

Konsequenzen für die Theorie zur Entstehung und zur Entwicklung des Weltalls ergeben sich aus dieser großen Menge und aus der Unsicherheit über die wirkliche Menge. Aus den Beobachtungen von Hubble um 1930 wurde geschlossen, dass das Weltall sich ausdehnt. Gegen diese Fluchtbewegung wirkt die Masse durch die Gravitation bremsend. Ob diese Kraft aber ausreicht, die Fluchtbewegung so stark zu verlangsamen, dass sie nach endlicher Zeit zum Stillstand kommt und sich dann zu einer Kontraktion umwandelt, ist entscheidend für die Zukunft des Universums. Die Entscheidung ist durch die Abweichung der Materiedichte von der theoretisch ermittelten kritischen Dichte gegeben und abhängig von der Menge der insgesamt vorhandenen Masse und der noch genauer zu messenden Fluchtgeschwindigkeit.


Beobachtungen von Hubble

Messung: Aus der Rotverschiebung der Spektren des Sternlichtes lässt sich die Fluchtgeschwindigkeit berechnen, aus Helligkeit und Parallaxe erhält man die Entfernung der Sterne. Hubble hatte 1931 die Wertepaare aus Entfernung und Fluchtgeschwindigkeit für Sterne in Entfernungen bis etwa Lj gemessen.

Ergebnis: Die Fluchtgeschwindigkeit v ist proportional zur Entfernung r

Hubble-Konstante:

Folgerung für Evolution: Durch Rückrechnung bei konstanter Geschwindigkeit v = H·r erhält man die Zeit t, die vergangen ist, seit das Universum die Größe Null hatte, zu

.

In der Literatur differieren die Werte im Bereich von 10· a bis 20· a je nach benutztem Wert der Hubble-Konstanten. Dabei wird vorausgesetzt, dass die Hubble-Konstante in der Zeit konstant geblieben ist. Bei einer Abnahme der Geschwindigkeit aufgrund der Gravitationskräfte kann die Zeit nur eine Obergrenze für das Weltalter sein.