Integralrechnung/Ober- und Untersumme
Aus ZUM-Unterrichten
An dieser Stelle erscheint nun eine Zusammenfassung des bisher Gelernten sinnvoll:
Merke
- In einem Geschwindigkeits-Zeit-Diagramm ist die während eines bestimmten Zeitintervalls zurückgelegte Strecke gleich dem Flächeninhalt innerhalb dieses Zeitintervalls, der zwischen dem Graphen der Funktion und der x-Achse liegt.
- Bei einer konstanten Funktion (z.B. konstante Geschwindigkeit) entspricht der Flächeninhalt (zurückgelegter Weg) unter dem Graphen in einem beliebigen Intervall (Anfangs- und Endzeitpunkt) einfach dem Produkt aus der Intervalllänge (Zeitdauer) und dem konstanten Funktionswert (Geschwindigkeit).
- Bei einer allgemeinen (auch nicht-konstanten) linearen Funktion entspricht der Flächeninhalt unter dem Graphen dem Mittelwert aus oberer und unterer Rechteckfläche. Dies gilt insbesondere auch für die konstante Funktion!
- Im Allgemeinen kann der Flächeninhalt unter dem Graphen einer beliebigen Funktion durch viele schmale Rechtecke in der Ober- und Untersumme angenähert werden. Dabei wird wieder der Mittelwert aus Ober- und Untersumme gebildet.