Potenzfunktionen - 3. Stufe

Aus ZUM-Unterrichten

Die Graphen der Funktionen mit f(x) = x1/n, n IN

Es sei stets IN0={0,1,2,...} und IN={1,2,3,..}, insbesondere also IN0 =/= IN.
Wir betrachten in diesem Abschnitt die Graphen solcher Funktionen, die einen positiven Stammbruch der Form mit als Exponenten haben. Während in Stufe 1 und 2 dieses Kurses die Exponenten stets ganzzahlig waren, gilt für die Stammbrüche: .

Vergleich mit Funktionen aus Stufe 2

Vorlage:Arbeiten
Die Datei [INVALID] wurde nicht gefunden.


Potenzen und Wurzeln

Eine Funktion mit der Gleichung mit heißt Wurzelfunktion.

Potenzfunktionen der Bauart und Wurzelfunktionen hängen eng zusammen, denn es gilt:


Darin ist die n-te Wurzel über folgenden Zusammenhang festgelegt:


Im Falle nennt man die Wurzel "Quadratwurzel" und man schreibt:


Im Falle nennt man die Wurzel "Kubikwurzel", i. Z.: bzw. .


Beispiel: Quadratwurzel


Eine positive Zahl hat zwei Quadratwurzeln, eine positive und eine negative. So ist etwa

  • .

In manchen Fällen (etwa wenn es um die von Längen oder Flächeninhalten geht) ist nur die postive Lösung sinnvoll.


Beispielsweise ergibt sich die Länge der Diagonale in einem Quadrat der Seitenlänge über den Satz des Pythagoras () zu:

Die mathematisch richtige Lösung ist in dieser Situation nicht sinnvoll und kann vernachlässigt werden.


Auch die Länge der Raumdiagonale im Einheitswürfel (das ist ein Würfel mit der Kantenlänge s=1) ergibt sich über eine analoge Rechnung aus dem Satz des Satz des Pythagoras (hier: ) zu:

Beispiel: Kubikwurzel

Das Volumen eines Würfels (lat.: "cubus") der Kantenlänge ergibt sich über:

Umgekehrt erhält man die Kantenlänge eines Würfels mit Volumen durch ziehen der 3.-Wurzel:


  • , aber auch


Die Datei [INVALID] wurde nicht gefunden.


Definitionsbereich der Wurzelfunktionen

Einschränkung auf IR+

Offenbar ergibt die Wurzelfunktion zumindest bei ungeradem n sowohl für positive als auch negative x Lösungen, wie folgendes Beispiel zeigt:


Allerdings kann die Definition der Wurzelfunktion auf ganz IR auch zu Wiedersprüchen führen. An einem Beispiel wird die Problematik klar:


Um solche Fälle von Nicht-Eindeutigkeiten oder langen Fallunterscheidungen zu umgehen, schränkt man den Definitionsbereich ID der Wurzelfunktionen i.d.R. grundsätzlich auf die positiven reelle Zahlen ein, also:

mit und

Wurzelfunktion auf ganz IR

Will man eine Wurzelfunktion g dennoch auf ganz IR definieren (d.h. ID = IR), dann muss man sie - nach obiger Vorüberlegung - aus zwei einzelnen Wurzelfunktionen zusammensetzen. Man definiere etwa g derart, dass

.

Dann gilt: IDg = IR.

kurz nachgedacht

  • asd asd
  • asd asd asd
  • aasdd