Einführung in die Differentialrechnung
Achtung: Baustelle: Lernpfad zur Einführung in die Differentialrechnung
Einstiegsaufgaben
Blumenvase
![GeoGebra](/extensions/GeoGebra/images/geogebra-logo.png)
In eine Vase wird gleichmäßig Wasser eingefüllt. Die Höhe des Wasserstandes in Abhängigkeit von der Zeit kann mit folgender Funktion beschrieben werden:
Mit welcher Geschwindigkeit nimmt die Wasserhöhe zum Zeitpunkt t=12 Sekunden zu?
Barringer-Krater
In Arizona gibt es einen Einschlagskrater eines Meteoriten, den sogenannten Barringer-Krater.
Der Krater hat einen Durchmesser von etwa 1200 Meter und eine Tiefe von 180 Meter. An der flachsten Stelle kann der Kraterrand durch die folgende Funktion beschrieben werden: für
Hier kommt noch ein Koordinatensystem mit der Funktion hin
Im Krater befindet sich ein Fahrzeug, das eine Steigung von bus zu 100% bewältigen kann. Kann das Fahrzeug den Kraterrand erreichen und aus dem Krater herausfahren?
Durchschnittliche Änderungsrate
Blumenvase
![GeoGebra](/extensions/GeoGebra/images/geogebra-logo.png)
Beantworte die Fragen, indem du die Schieberegler für t und t1 entsprechend einstellst:
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 14 Sekunden?
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 13 Sekunden?
Mit wie vielen cm/s ändert sich die Höhe im Schnitt im Zeitintervall zwischen 12 und 12,5 Sekunden?
...
Sekantensteigung
Barringer-Krater
Ich schreibe in den nächsten Tagen an diesem Abschnitt noch weiter (Roland)
Die Steigung der Sekante durch die Punkte und des Graphen der Funktion kann man mit
berechnen.
![GeoGebra](/extensions/GeoGebra/images/geogebra-logo.png)
Verändere im Applet die Punkte A und B und ...
Berechne ..., indem du die Funktionswerte mit Hilfe der Funktionsvorschrift berechnest.
Vorlage: Differenzenquotient
Übungen? Übung
Übung? Übung Sekante
Differenzenquotient
Plenumsphase? Möglicher Inhalt: Verbindung zwischen durchschnittlicher Änderungsrate, Sekantenssteigung und Differenzenquotient (allgemeine Beschreibung für die beiden Konzepte) herstellen.
Differentialquotient
Vorlage: Differentialquotient
Durchschnittliche Änderungsrate => momentane Änderungsrate
Sekantensteigung => Tangentensteigung
Differenzenquotient => Differentialquotient
Ableitungsfunktion
Kontext plus Übung