Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Ziegen

Aus ZUM-Unterrichten

Das „Ziegen-Problem“

Bilder siehe Wiki! Vorlage:Kasten Mathematik


Aufgabe

Ist es vorteilhaft für den Kandidaten zu wechseln? Löse die Aufgabe mit einem Baumdiagramm!


Oder hast du das „Ziegen-Problem“ noch nicht so richtig verstanden?

Dann öffne folgende Seite mit einer anschaulichen Beschreibung in einem neuen Fenster. Betrachte aber noch nicht die Lösung!

Vorlage:Rechtsklick Fenster Ziegen-Problem anschaulich erklärt




Hast du dir schon überlegt, ob sich die Wahrscheinlichkeit beim Wechseln ändert und möchtest deine Hypothese überprüfen? Oder möchtest du einfach die Quiz-Show nachspielen?

Dann öffne das Java-Applet und spiele das „Ziegen-Problem“ nach! (Dafür benötigt dein Browser wieder Java!) Die Türen öffnen sich, wenn du sie anklickst. „Reset Doors“ schließt die Türen wieder. Versuche dich an zwei Strategien: Behalte deine ausgewählte Tür oder wechsle die Tür jedes mal.

Vorlage:Rechtsklick FensterZiegen-Problem, nur mit Schweinchen




Versuche dich nun selbst an der Lösung des „Ziegen-Problems“!


Brauchst du ein wenig Unterstützung, so bearbeite die folgenden Aufgaben Schritt für Schritt.


Vorlage:Aufgaben-M

Das Auto steht hinter jeder Tür mit einer Wahrscheinlichkeit von :

BaumdiagrammAuto


Vorlage:Aufgaben-M

Der Kandidat wählt sofort die Tür mit dem Hauptgewinn mit einer Wahrscheinlichkeit von :

BaumdiagrammKandidat


Vorlage:Aufgaben-M

Lösungshilfe: Vorlage:Versteckt


Lese die Wahrscheinlichkeiten im Baudiagramm ab:

BaumdiagrammModerator


Vorlage:Aufgaben-M

Wechselt man nicht, so erhält man die Wahrscheinlichkeit, das Auto zu gewinnen, indem man die Wahrscheinlichkeiten aller Pfade ohne Wechsel, addiert:

BaumdiagrammkeinWechsel

Fehler beim Parsen (⧼math_empty_tex⧽): {\displaystyle }


Addiere die Wahrscheinlichkeiten der Pfade mit Wechsel:

BaumdiagrammWechsel

Fehler beim Parsen (⧼math_empty_tex⧽): {\displaystyle }


3-Türen-Problem mit Schweinchen und bis zu 10 Türen (außerdem Simple Monty Hall, Urnen-Experiment 4-farbig, Augensumme eines/zweier Würfel mit Spiel, Glücksrad etc.).