Laplace-Wahrscheinlichkeit wiederholen und vertiefen/Efron

Aus ZUM-Unterrichten

Die „Würfel von Efron“

Vorlage:Kasten Mathematik


Aufgabe
Findest du das Spiel fair?

Um dies herauszufinden, bastle dir die „Würfel von Efron“ ganz einfach nach. Nimm dazu beispielsweise vier helle Spielwürfel und beschrifte diese mit einem Folienstift so wie oben dargestellt, oder beklebe deine Würfel mit Papier. Jetzt spiele mit einem Freund oder einer Freundin nach den Spielregeln.

Wie ihr sicherlich herausgefunden habt, scheinen manche Würfel besser zu sein als andere. Wenn du die nächsten Aufgaben bearbeitest, wirst du erkennen, dass man mit einer gewissen Taktik sein Glück in diesem Spiel ganz schön beeinflussen kann.


Vorlage:Aufgaben-M

Lösungshinweise: Vorlage:Versteckt


Vorlage:Aufgaben-M

AnnaundPia.jpg


Lösungshinweise: Vorlage:Versteckt


  • Da Anna sicher eine 3 würfelt, gewinnt sie nur wenn Pia eine 0 würfelt.
Nach Aufgabe 4.1 ist diese Wahrscheinlichkeit  
Das Ereignis „Pia gewinnt“ ist das Gegenereignis dazu und berechnet sich demnach folgendermaßen:


  • Dies lässt sich auch aus dem folgenden Baumdiagramm erkennen:
PiaundAnna.jpg
Die Wahrscheinlichkeit eines Pfades berechnet sich aus dem Produkt aller Wahrscheinlichkeiten entlang des Pfades („Produktregel“)!
  • Betrachte diese 36-Feldertafel:
36 Felder Tafel rot grün.jpg
Hier werden alle möglichen Würfelpaare abgebildet.
Beispiel: zeigt der grüne Würfel 0, gewinnte der rote und die passenden Felder wurden rot markiert.
Zählt man die Felder einfach ab, so folgt:
Der grüne Würfel gewinnt mit einer Wahrscheinlichkeit von    gegen den violetten Würfel.
Das stimmt mit dem Baumdiagramm und der Rechnung überein!


Vorlage:Aufgaben-M


Die Tabelleneinträge stehen für die Wahrscheinlichkeit, dass der Würfel in der Zeile gegen den in der Spalte gewinnt.
EfronTabelleLeer.jpg
Beispiel: Die Werte aus Aufgabe 4.2 sind schon eingetragen.


Hast du hierbei noch Schwierigkeiten, erklärt dir folgende Lösungshilfe ein weiteres Beispiel ganz genau:

Vorlage:Versteckt


  • Es gibt insgesamt verschiedene Spielpaarungen.
Die Wahrscheinlichkeiten, dass Spalte gegen Zeile gewinnt sind nun eingetragen:
EfronGewinntabelle.jpg
  • Nein, es gibt keinen „Superwürfel“. Man findet zu jedem Würfel einen Besseren, der mit einer Wahrscheinlichkeit von  gewinnt.
Die beste Strategie zu gewinnen ist also höflich zu sein und dem Anderen den Vortritt zu lassen!



Für Interessierte: Vorlage:Aufgaben-M

4bunteWürfel.jpg

Lösungshilfe: Vorlage:Versteckt


Baum3.jpg


  Der gelbe Würfel gewinnt auf jeden Fall, falls er die 6 zeigt.
  Dann sind die anderen Würfe uninteressant und der Pfad ist schon zu Ende.

  Falls er die 2 zeigt, muss der nächstbeste Würfel gesucht werden.





  Als nächstes kann der türkise Würfel gewinnen, falls er 5 zeigt. Der Pfad ist zu Ende.





  Wenn nicht, könnte der grüne Würfel gewinnen, falls er die 4 zeigt.





  Hat bis jetzt keiner gewonnen, gewinnt schließlich der violette Würfel.


Aufgabe
Spielt das Spiel aus Aufgabe 4.4 zu viert nach! Würfelt mindestens zehnmal und vergleicht eure Gewinnstatistik mit den berechneten Wahrscheinlichkeiten.




Vorlage:Kasten Mathematik