Größenvergleich von Brüchen
zurück zum Lernpfad Brüche kürzen
Größenvergleich
Wer hat nun mehr Kuchen gegessen?
Ob 2 größer ist als 4, das ist nicht schwer.
Aber der Größenvergleich mit Brüchen ist nicht ganz so einfach.
Vergleich auf dem Zahlenstrahl
Welcher Bruch liegt wo auf dem
Zahlenstrahl?
Findest du eine Regel heraus?
Bei Stammbrüchen, also wenn im Zähler eine 1 steht, musst du nur die Nenner vergleichen. Der Bruch mit dem kleineren Nenner ist größer.
|
Aber gilt das nur für Stammbrüche?
Bearbeite nun folgende Aufgaben und schreibe dir deine Antworten auf deinen Laufzettel,
du wirst sie noch kontrollieren müssen.
Verstelle wieder zuerst den Nenner und dann den Zähler.
Waren deine Antworten richtig? Teste dich:
1. Frage:
- ist der größere Bruch.
2. Frage:
- ist der größere Bruch.
3. Frage:
- Der Nenner des größeres Bruches ist kleiner als der Nenner des kleineren Bruches .
Und die 1. Regel lautet:
Vorlage:Versteckt
Gibt es noch andere Regeln?
Versuche eine weitere Regel herauszufinden und schreibe dir die Lösungen der Fragen auf deinen Laufzettel.
Verstelle wieder zuerst den Nenner und dann den Zähler.
Waren deine Antworten richtig? Teste dich:
1. Frage:
- ist der größere Bruch.
2. Frage:
- ist der größere Bruch.
3. Frage:
- Der Zähler des größeres Bruches ist größer als der Zähler des kleineren Bruches .
Und die 2. Regel lautet: Vorlage:Versteckt
Die letzte Regel
Versuche eine letzte Regel herauszufinden und schreibe dir die Lösungen der Fragen auf deinen Laufzettel.
|
Waren deine Antworten richtig? Teste dich:
1. Frage:
- ist der größere Bruch.
2. Frage:
- ist der größere Bruch.
Aber da steckt doch keine Regel dahinter, oder?
Aber vielleicht kannst du eine daraus machen...
Schreibe dir den Merksatz in dein Heft:
Zwei oder mehr Brüche werden gleichnamig gemacht, indem man alle Nenner so erweitert,
|
Es gibt schon eine Regel für Brüche, die den gleichen Nenner haben: die 2.Regel!
Schreibe dir den Merksatz in dein Heft:
- Merke
- 3. Regel
Sind weder die Zähler noch die Nenner gleich, dann musst du du die Brüche gleichnamig machen
Wenn sie dann den gleichen Nenner, den Hauptnenner haben, kannst du die 2.Regel anwenden.
Der Bruch mit dem größeren Zähler ist größer.
Beispiel:
- Die beiden Brüche haben z.B. den Hauptnenner 18.
- Weil und ist, gilt . Also ist
Aber wie findet man den Hauptnenner?
Übung zum Hauptnenner
Übungen zum Größenvergleich
Bearbeite alle Aufgaben. Gibt es mehrere Schwierigkeitsgrade zur Auswahl,
dann musst du nur eine Aufgabe bearbeiten.
1. Welcher Bruch ist größer?
Vorlage:Rechtsklick Fenster Los geht's...
2. Sortieren von klein nach groß
- leicht
- mittel