Vektorrechnung/WHG Q1 Vektoraddition
- Verändern Sie in beiden Konstruktionen die Anfangs- und Endpunkte der Vektoren und .
- Geben Sie mit Hilfe der Darstellungen eine Rechenvorschrift für die Addition zweier Vektoren an.
- Geben Sie auch eine Rechenvorschrift für die Addition zweier Vektoren des Raumes an (Vektoren mit drei Einträgen).
<!DOCTYPE html> <html> <head> <meta name=viewport content="width=device-width,initial-scale=1"> <meta charset="utf-8"/> <script src="https://cdn.geogebra.org/apps/deployggb.js"></script>
</head> <body>
<script> var parameters = { "id": "ggbApplet", "width":2158, "height":962, "showMenuBar":true, "showAlgebraInput":true, "showToolBar":true, "customToolBar":"0 73 62 | 1 501 67 , 5 19 , 72 75 76 | 2 15 45 , 18 65 , 7 37 | 4 3 8 9 , 13 44 , 58 , 47 | 16 51 64 , 70 | 10 34 53 11 , 24 20 22 , 21 23 | 55 56 57 , 12 | 36 46 , 38 49 50 , 71 14 68 | 30 29 54 32 31 33 | 25 17 26 60 52 61 | 40 41 42 , 27 28 35 , 6", "showToolBarHelp":true, "showResetIcon":false, "enableLabelDrags":false, "enableShiftDragZoom":true, "enableRightClick":false, "errorDialogsActive":false, "useBrowserForJS":false, "allowStyleBar":false, "preventFocus":false, "showZoomButtons":true, "capturingThreshold":3, // add code here to run when the applet starts "appletOnLoad":function(api){ /* api.evalCommand('Segment((1,2),(3,4))');*/ }, "showFullscreenButton":true, "scale":1, "disableAutoScale":false, "allowUpscale":false, "clickToLoad":false, "appName":"classic", "showSuggestionButtons":true, "buttonRounding":0.7, "buttonShadows":false, "language":"de", // use this instead of ggbBase64 to load a material from geogebra.org // "material_id":"RHYH3UQ8", // use this instead of ggbBase64 to load a .ggb file // "filename":"myfile.ggb", "ggbBase64":"UEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAXAAAAZ2VvZ2VicmFfZGVmYXVsdHMyZC54bWztmk9T4zYUwM/dT+HRqT2QSI6dBAazw+5Mp8ywLFOYTq+KrTgqiuRaMjh8+sqSYzubmAUHSNJdDshP1t/fe3p6knP6MZ8z556kkgoeANSDwCE8FBHlcQAyNT0ag49nH05jImIySbEzFekcqwD4RcmqnpZ6Q+gVeThJAhAyLCUNgZMwrIoqARDTKaOcAMfJJT3h4grPiUxwSG7CGZnjSxFiZdqaKZWc9PsPDw+9Za89kcZ93bDs5zLqx7Hq6RQ4euhcBqB8ONHtrtR+GJh6LoSo//eXS9vPEeVSYR7qgehpRWSKM6akfiSMzAlXjlokJACJoFwBh+EJYQG4LiTn12lKyG/AKStpWhCcffjlVM7EgyMm/5BQ56k0I1U9I/SLMvr1Z8FE6qQBGI2AE9tkEgDX9zU0lsxwAKAtzPCCpM49ZlUOzpQITX2TO8VMkmVZ3dMXERH7xivLczo3OB2piNYH7CHgyISQSI8alHNERj0Lo+lGi6EQaSSdPABX+Ao4izJ9tKkpYujc0MeyU7+ZqxaMNMZ+2i/BPg9xRBLCI11ohTPqxHk4NpyLZGKTw8bsvTXm4YFg3gFk9HLKX3mTrduJLXJ9A9ek7+UsDsJVXPA/SazH3GQ8+Mn4VRmvWrDXiS40bOGBkjVFLENZ/NeRjZgnjOSvCN5GRSXESyNU0N1uEUYTOtzRtgc7Qy+AWHxqRsM7TqQs2NbtFg9/0EjvX6Y/oaNIqnRLaDS2LZB/+YrSqNYZ1WWeVsQ046EyLqWE+zlL75vaGHhwF/qo2+y8AlqUsS3pdpaSxIVUcblZyrVpdwvqfnTTFpliRc8XXOnDFzEGK9cmd0dIcqub+spvU8xlcQJbtaV2zaV48ZTW/EPQ2o+ms6Xn4vc4rTTR1Fq3yKh17+65/q5V9wI33gSxfRCzV+b7QtvcyoiG3Za+C73N9HqjPTaiez09UWP4qxTrUOBnYNbFE26Ip3GqiKSYf+90whZxY01fL+VKIyOrke3H2K7TBq2VA6Q/MGr10ZqJI2j/kHcMERoid38tviC8chS5rjJqxujNGR/YumnnGQpeXIAvjxJWqkh6B+E/3u8koc9sNCbcul3pODk0xRbQVH6E5aeJHBl5gczbR2SzTX098JTmzrmtcW4Lnrs2GdjEs4lfAep2UDSqTbTjagTK3+wPXrfTzSG5kv+l0t8hWOfZnKQN13C1lCvj8a1z0O1lZEW1z3AFbXbSbhWS0Uib0JxqJR1p7c1xbrSIJ1KwTJGbMCWE19/nrBk/0EjNiuhO9z2leWEutk1nJlL6KLiqaDjFKjhn5kveym3GJvNxnwpeV4x1O/eMeczq1XhupVoD9rreFPr2Jm+TYpoMYYlw2HPHAzT2B3CERsf+ePhMpGhcI7Uvnk103T4QfAULedE6dzetc5yG9TXpAG52PLAH0cjzB+6x66PjY08/+K9/Gvy9yqhPNvt4q2csYK3om13YMRFmsr6GtlJFaPw9Qi2h8d7GKzjLKaM4XWxn7C9CrEheRwy3Rmj8lGAPA8L2qWjscT20Cys1vtfbyUyppsjxXFewnVD+CYd3cSoyHq3vQ68ydbRr22qHNhGCEVx7ok9LufGVeG3nbwNUbra7PC2EMxLeTUS+slk97WSorFfApREaX283rIDnz3J9ozvauSl0uZ9r+6i4MRRpku43fsvUX/5w6uw/UEsHCKgZt7nzBAAA4CUAAFBLAwQUAAgICAC9jjFRAAAAAAAAAAAAAAAAFwAAAGdlb2dlYnJhX2RlZmF1bHRzM2QueG1s7ZjdbtMwFMev4Sks39PYaZIt0zJUwQVIMA1xw62XnLaGxA62uzZ7Nd6BZ+LEzroUVsSqbRKIXuz46xzbv/+JE+/05aapyRUYK7UqKJ8wSkCVupJqUdCVm784pi/Pnp8uQC/g0ggy16YRrqBpP3Lrh7VJxpK+TbRtQctaWCtLStpauN6loHo+r6UCSsjGyhOlz0UDthUlfCyX0Ih3uhTOx1o6155E0Xq9ntzMOtFmEWFgG21sFS0WboKWEly6sgUdCicYd8d7PfV+MWM8+vT+XZjnhVTWCVXiQnBbFczFqnYWi1BDA8oR17WAG9BKllOcoxaXUBf0rXK4Vyj7JZJyZa7Qf3Au6JSnjJ49f3Zql3pN9OVnHFdQZ1aw9feVqB+D3a90rQ0xBY05JYiZM7SXaPMY+dXtUhSUTTgLP57kjPOMx8G/Fh0YciUwKAstYuV06UP61rmoLdyMxcnf6wpCTzKMV7LxrIl1gGLh5LYFqHwpbJ955TqfBON4KOBH19VA3FKWXxRYxJ+OnPrCG1lV0OdS8AG5AHWFRLSxqD3zs3TMD79mQ8ptuK933Pde89Ds/XGpRm7ILHjMwsBZHMw0mCSYdIsEvqqwTtv/LWgrDKYbBir7/tNoEPsX2cVG2unrrWqzoTpSmk0PUpp5oZmXmd2K/FiSYvY8rqj7+ZKhDLjr799+j9s/SKUwDqwUavS4veo7fiaf/Q3kH5P7fpAYX8GI34Wv7/DDY/AgfnnuAcY89wi93Z5R6UNhLLU2lSWbgp6LczwIBns92HWwfuhc9C+nYba9p+RdcNmBcHXdLaEyWt3yHTXdIp4OiA95ou4rC0+nXpeU/5zZk2RAkub4Ss6SB9Po0FS/F9mZKZeygQrELloU9qnQxjy8lpMjj7Y3/wbbiw5PZlntcn26lPVHBy4+D1zjfyZnL4y0zS5V/oRUs3BAB6p59ldSVeC2+zzvy+NTNf1/qt6H5deVqPyX2LDVDzf1MVN+4IVl/9GYJXn/O8p4esyTmD8UoMe4dNx55egbw72iC+Y63ga87y2EzLJgjoI5Dibfe0ORTVvLUrrfS2tXZo5X5rs+mYeuXZWTw1RGvzs/midHf5r2t4Gf5LOZ/+mXXTS68Uc3/144+wFQSwcIbDxgZVADAAAGEQAAUEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAWAAAAZ2VvZ2VicmFfamF2YXNjcmlwdC5qc0srzUsuyczPU0hPT/LP88zLLNHQVKiuBQBQSwcI1je9uRkAAAAXAAAAUEsDBBQACAgIAL2OMVEAAAAAAAAAAAAAAAAMAAAAZ2VvZ2VicmEueG1s3Vpdc9u2En1OfwWGD51kakkEP6VcKR3LUT9mnCZTp51Opy8QCUmIKZIlIFtq0//eXYCkRNN2JNtxfOuxDBJcLLDnHCwByMNv18uEXPBCiiwdWbRrW4SnURaLdD6yVmrW6VvfvvpqOOfZnE8LRmZZsWRqZPloWbeDu25ge1jH8nxkRQmTUkQWyROmsMnIymazRKTcIiKGfvqTyXcnY9qhXuh3vNfepHM86dudsR06AXW/o/1gYhGyluJlmv3EllzmLOJn0YIv2WkWMaV7XSiVv+z1Li8vu9X4ulkx78EQZG8t4958Pu1CaREIMpUjq7x4CX4brS9d3c6xbdr77c2p6acjUqlYGsGQEYCVePXVs+GlSOPsklyKWC1GlkP9vkUWXMwXAMkgcCzSQ6sccMl5pMQFl9B251ZHr5a5pc1Yis+fmSuS1IFZJBYXIubFyLK7duhRzwkdL/R86nou9JgVgqeqNKZlp73K3fBC8EvjF690l55FVJYlU4YuycePxLEdmxxhQU3hmFrb3NquKRxTeKbwjY1nWnrG1DM2nrHxXJCFkGKa8JE1Y4lExtNZARzW91JtEq6HUlZsI6dHEI4Uf4Ex9GcRgzeM+cg+8mz9MeHuxEZ3elTF6sAOq+5oQPv79efcK0K3EZ9i05F1fPr9ZPzzcbN354be+ztMUqTrI6HIky5cggxRzRQWXnkbmNtQF9Qua/umdoC3wf1oq1H0d0jz7SP9qz9t2h6oS9feu0v3IOqMlu7XY9CYeA8TsNffH2On/+h9evYgfBCYD9BSaF+b30xJy/JhyB/sT75PneawCCU+zFif0AEkywCno0OoTzyo6UNNSFys86lHXIIm1CU6r3p65gbwBB/DX9+3CcX8C4ERyN0QpIMp2/eJD2YhtsWcEAy0Pxs+aA0jgo+Lda4LH13nevDBJO6DI9+4gXH4bqCvfP0Xc4UPvfgIK9GPoM4bQHdY4YeUuDASuA9tAn5d7ITqaOB1gb+UmDdFSJw+0V61f/t+6XRvhQ571WtxWFJC5AJty1eG4kuJJIUuCZyaqgCRLPkKHRL6JAx2WDtC3gJ/Sx0S129Q5/eb/AVYGWoxAFAIvSHS8Souj0o2P7bYBNi9LfIwQHRFCQG9kAAZKimAUTg1CY6PPDgBAaJ8hwQooRv4gPVaJkUN7IIneQ25xlCk+Uo1cIuWcXWpMrBmiV6HlfZxFp2Pa6RLT5xJtesWVi7bBZJZyTTWT8+GCZtyWDzOz1AHhFywBN+juodZlipSJQzH0u70Wm3IV1EiYsHSX4H3aln002o55QXRlxkGqZ1gc1It6mi/v7uoswfGJsqyIj7bSNAJWf/OC2jt+11YlA3qH4tszAMauF0agvSqH0iIMmKocB9eCJv6umvv/pSj4RdnXCkIVxK25rKCd16IePf6RznOkrgGMs9Eqk5YrlaFXrsDfwWGcJzOE66B0ysXWNpG59NsfWbWIIHx9X6T8xrS6fwkS7KCwHRzfB8MynJqSm2DA6ut8CU3N8VUF9oE/dYmdOBoG11OTamtcE9gaDWx0ipQalc9CamzKczjXeFpTeBSeZUKdVrdKBGdl8GW9obxCsWmS/pALoe9K2IbnvMi5YnRTQpcrrKVNLrdDmMl+TumFsdp/DOfw5x7xzDpKfB81TLmkVgCzaa+lAlDYn+BkZramM8LXgVoJqHBVT/FkecFZ7FccK7wfkfUu2Y6mmr0Q1ieJly/z5YCckIHyFuytRYSTIS8HMtQRoXIUbFkCpn5nG9VGQuJLuoKtAZEJMQWYZ4BdBUiC/vGlVpkhd77MIU1OIUTvoSNDlFanlrhNUvHeguFdJBs+gGSxRUWt+jB41qHtlahXYuZsCRfsBqPhG0wO9RQlKnn7WwmuSIQeIdCmw0u3ncev8li3mjEUqBLh2dQsruotJxzozkTDtW7442erDU4JSUS+7K7pi9d/lXzrmHA6dvIg6a2xWSJ4CewHH8RLOmjIemWSNIHwDHKlkuWxiTVC5RfAayssLbvRmajNAmjiKqBbKWqB8w4K120SLkwzirU2SdY2Qn1JlrsOwjcNlAF19JCW9A2JFr5rJO6WkD2TLmU5ghCh2mbix9EHPO06dI0kibbRqxQXEJOLV/SCu7fIT2Er3NE+QCFnzyiwj+TiL1SxM6DpIM9ZDw2Mj5pyXh6kIynd5OxT82CwXfvqOTgIB2bZES/gI7Hd88wbWqig6iJ7kZNtSpEiqamODTLeI7Gu0PpfvR4RvpfPsk0yXlbwKJlnqUsOcWz7Wvnz/oYlpstouLbiTJH5SUNcZumah+8b/bad/q0cteWgo6ZIrbmAN+oN7Pg3M4C/zNtcCCWeSIioe6BdTkhNtdizQ/Amj8JrO1ydhi9PzGsT27T9ewArGdPAuuGrr0nhvX4Nl3PD8B6/iSwbuiaPjbSP6a4uYbYr4DMDchxC+DXtwPcXGK+vhvCrcOTe4PsPui+cT8I5wbCWQvCySEQTp4KhN5n2zCe8TnWX//6et2Cb3E7fLL0VuGz+CLbHOf6ae5q8Dr01pTq1vsf/+CZrpFKcMtUyxI2Wa3Ts3POczzgfJu+L1gq8d8RjMn2SOpAusY30SUOo0vcg667b4ycW3f4bTKrdFLRGf5X+Zy0+PxwGJ8fntL0oyVf/zWyJjftfc8PI+v8ESffLWTp/LidX8H/2fSCXXIBI8PDrRK39yA8vXf++s9Vpv73xwWP/mb/mBvdukmL4ustJ9D2vjPozqtUIU/Ze/7bVTj0F4ySF2K2/Toa1gBvdr56tq0Kbvv6U4Tnx+QbMn5BesTZGcFORjYK6Dj9PeB12vBO94XXedSzuNZ5zueEeAwQn9QQfwJDt41h9A8Zkb9NBbh6vn4evXgBF2XNH9EiyyTfPt80nlcEkE8x4D7ukdujUnDcoOCaQ79S5oF/laLe7neC+iv88v85X/0LUEsHCGG2TlmaCAAAoSoAAFBLAQIUABQACAgIAL2OMVGoGbe58wQAAOAlAAAXAAAAAAAAAAAAAAAAAAAAAABnZW9nZWJyYV9kZWZhdWx0czJkLnhtbFBLAQIUABQACAgIAL2OMVFsPGBlUAMAAAYRAAAXAAAAAAAAAAAAAAAAADgFAABnZW9nZWJyYV9kZWZhdWx0czNkLnhtbFBLAQIUABQACAgIAL2OMVHWN725GQAAABcAAAAWAAAAAAAAAAAAAAAAAM0IAABnZW9nZWJyYV9qYXZhc2NyaXB0LmpzUEsBAhQAFAAICAgAvY4xUWG2TlmaCAAAoSoAAAwAAAAAAAAAAAAAAAAAKgkAAGdlb2dlYnJhLnhtbFBLBQYAAAAABAAEAAgBAAD+EQAAAAA=", }; // is3D=is 3D applet using 3D view, AV=Algebra View, SV=Spreadsheet View, CV=CAS View, EV2=Graphics View 2, CP=Construction Protocol, PC=Probability Calculator DA=Data Analysis, FI=Function Inspector, macro=Macros var views = {'is3D': 0,'AV': 0,'SV': 0,'CV': 0,'EV2': 0,'CP': 0,'PC': 0,'DA': 0,'FI': 0,'macro': 0}; var applet = new GGBApplet(parameters, '5.0', views); window.onload = function() {applet.inject('ggbApplet')}; applet.setPreviewImage('','https://www.geogebra.org/images/GeoGebra_loading.png','https://www.geogebra.org/images/applet_play.png'); </script> </body> </html>