Die Mittelsenkrechte

Aus ZUM-Unterrichten

Vorlage:Babel-1

Materialien:
Pdf20.gif Arbeitsblatt zur Mittelsenkrechten



Die Mittelsenkrechte

Sägen.jpg
In der schönen Maienzeit,

wenn die bayerischen Dorfesleut
viele große Stämme krachen
schmücken und zurechte machen,
wünschen Max und Moritz auch
sich einen Maibaum zum Gebrauch.
Max und Moritz, gar nicht träge,
Sägen heimlich mit der Säge,
Ritzeratze! voller Tücke,
In die Birke eine Lücke.
Max und Moritz heimlich geh'n
wo der Maibaum nun soll steh'n
Dieser wird nun aufgestellt
wo es allen Leut' gefällt,
wo die Katzen oft 'rumschleichen
mittig zwischen den zwei Eichen


Eichen.jpg



Aufgabe:
Betrachte die obige Skizze der beiden Eichen.

  1. Überlege zunächst, welche besonderen Eigenschaften der Maibaum von Max und Moritz besitzen muss.
  2. Welche besonderen Eigenschaften besitzt die rote Gerade? Überlege wie man aufgrund ihrer geometrischen Eigenschaft diese konstruieren kann!
  3. Konstruiere (auf einem Notizblatt) zwischen zwei beliebigen Punkten eine Mittelsenkrechte!
  4. Überprüfe Deine Konstruktionsschritte anhand folgender animierten Konstruktion!
  5. Formuliere die einzelnen Konstruktionsschritte schriftlich auf einem Übungszettel! Überprüfe die Konstruktionsschritte mit Deinem Nachbarn! (Besprochene Pdf20.gif Konstruktionsschritte)


Was ist eine Mittelsenkrechte?

Vorlage:Kasten blau Mittelsenkrechte.png

Notiere auf Deinem Arbeitsblatt:

  1. Übertrage die Definition der Mittelsenkrechten auf Dein Arbeitsblatt!
  2. Wann kommt in der Natur, im Alltag eine Mittelsenkrechte vor? Überlege Dir mindestens drei weitere Beispiele und notiere auf dem Arbeitsblatt!



Konstruktion der Mittelsenkrechten

Aufgabe:

  1. Öffne die Geogebra.svg GeoGebra-Datei mit zwei Eichen, am Punkt A und am Punkt B.
  2. Konstruiere die Mittelsenkrechte auf die Strecke [AB], die beide Eichen miteinander verbindet!
  3. Speichere die Datei unter dem Namen "Mittelsenkrechte_<<DeinName>>" im Klassenverzeichnis auf der Festplatte ab!



Puzzle zur Mittelsenkrechten

Zuordungspuzzle: Ordne die jeweiligen "Schatzkarten" den Beschreibungen zu!

Wiederholung

Für kühles Eis in der Sommerzeit,

sind Max und Moritz zu allem bereit.
Rechts der Stadtplan ihrer Stadt,
wo sie wohl eine Eisdiele hat?

Eisdiele.jpg


Aufgabe:
Zeichne alle möglichen Eisdielen in den Stadtplan ein, der von Max und Moritz (Luftlinie!) gleichweit entfernt sind!

  1. Öffne die Geogebra.svg Geogebra-Datei Eisdiele und konstruiere die Menge aller Punkte, die von Max und Moritz (Luftlinie!) gleich weit entfernt sind!
  2. Weiß eingezeichnet sind die Straßen, braun mögliche Gebäudekomplexe. Trage in Geogebra diejenigen Punkte ein, die (Luftlinie!) von Max und Moritz gleichweit entfernt sind und an denen sich eine Eisdiele befinden könnte!
  3. Wie weit ist die nächste Eisdiele (Luftlinie!) von beiden entfernt?
  4. Wer von beiden hat den weiteren Weg zur Eisdiele?



Hausaufgabe

Schmid A., Weidig I. (Hrsg.): Lambacher Schweizer 7, Mathematik für Gymnasien, Stuttgart 2005:
S. 18 / Nr. 3, 5 und 7


Dies nun war der zweite Streich und der dritte folgt zugleich!


Lernpfad
3. Streich: Das Lot



Lernpfad


Lernpfad


Lernpfad
3. Streich: Das Lot



Vorlage:Kasten blau