Quadratische Funktionen erkunden/Die Scheitelpunktform
Achtung Baustelle! An diesem Teil des Lernpfads wird derzeit gearbeitet.
Herzlich Willkommen zum Lernpfad "Quadratische Funktionen erkunden - die Scheitelpunktform"!
In diesem Kapitel des Lernpfads wirst du die Scheitelpunktform quadratischer Funktionen kennenlernen. Du kannst selbstständig mithilfe der vorliegenden Applets reale Flugkurven, Gebäude oder Phänomene aus der Natur modellieren, in einem Zuordnungsquiz selbst überprüfen, ob du alles verstanden hast, und abschließend in Partnerarbeit Flugkurven im Sport untersuchen. Bei einigen Aufgaben und Übungen benötigst du das Arbeitsblatt Die Scheitelpunktform. Viel Erfolg!
Für diese Aufgabe benötigst du dein Forscherheft .
a) Finde mithilfe der Schiebregler im Applet den passenden Funktionsterm für drei Bilder. Wenn du noch weiter üben möchtest, kannst du auch mehr Funktionsterme suchen.
b) Kontrolliere die Terme mithilfe der Lösungsvorschläge und beantworte anschließend die Reflexionsfragen in deinem Forscherheft.
b) Fehler-Analyse & Reflexion
c) Diskutiert zu zweit auf Basis dieses Austauschs und der Reflexionsfragen von Aufgabe 1 b), inwieweit durch quadratische Funktionen (in Scheitelpunktform) der reale Verlauf von Flugkurven, Gebäuden o.ä. beschrieben werden kann: Bei welchen Modellen gelingt dies besser als bei anderen und warum? Begründet anhand eines geeigneten Beispiels eurer Wahl, warum die quadratische Funktion die Realität nicht immer ideal beschreiben kann.
https://www.geogebra.org/m/RCgFCGP9
--Carsten (Diskussion) 15:24, 5. Nov. 2016 (CET)