Logarithmusfunktion

Aus ZUM-Unterrichten

Lernpfad zur Logarithmusfunktion

Info zur Bearbeitung
Bearbeitet die folgenden Aufgaben zur Logarithmusfunktion. Was ihr jeweils zu tun habt steht in der Aufgabenstellung. Teilweise gibt es Buttons mit "Tipp" und "Lösung". Wenn ihr auf diese klickt, öffnet sich entsprechend ein Tipp zur Bearbeitung oder die Lösung der Aufgabe.

Erkundung der Logarithmusfunktion

(Sollte euch das Applet nicht angezeigt werden hilft es i.d.R. ein paar mal die Seite zu aktualisieren.)

a) Zoomt in dem GeoGebra-Applet ganz nah an die y-Achse heran und folgt dem Verlauf des Graphen. Was fällt euch auf?

b) Zoomt wieder raus. Probiert die verschiedenen Schieberegler aus. Verändert dabei immer nur einen und notiert euch welchen Einfluss die jeweilige Änderung auf den Funktionsgraphen hat.

GeoGebra

Nice to know!

Was ist der Logarithmus überhaupt?

Die Ableitung des natürlichen Logarithmus

Die Ableitung von kann mit Hilfe der Ableitungsregel für Umkehrfunktionen

berechnet werden.

Aufgabe: Leite mit Hilfe der obigen Ableitungsregel den natürlichen Logarithmus ab.

Da ist . Setzte diese entsprechend (teilweise ja die Ableitung) in die Formel ein.

Ableiten verschiedener -Funktionen

Leite die folgenden orangenen Funktionen ab und ordne sie dann ihrer Ableitung zu. Notiere die eventuelle Fragen oder Unklarheiten.



, dann
, dann
, dann

Die Stammfunktion des natürlichen Logarithmus

Die Stammfunktion des natürlichen Logarithmus ist definiert durch:

.

(Die Integration kann man mit Hilfe partieller Integration durchführen.)

Aufgabe: Weise nach, dass die obige Funktion die Stammfunktion von ist.


Leite ab.

Kurvendiskussion ohne GTR

Gegeben ist die Funktion .

a) Untersuche diese hinsichtlich des Definitionsbereiches, der Symmetrie, der Schnittpunkte mit den Koordinatenachsen, dem Unendlichkeitsverhalten der Extrempunkte und der Wendepunkte.

b) Die Wendetangente begrenzt mit den Koordinatenachsen ein Flächenstück im 4. Quadranten. Berechne den Flächeninhalt dieses Stückes.

GeoGebra