Bruchteil, Anteil und Ganzes bei der Bruchrechnung

Aus ZUM-Unterrichten

Lernpfad

Herzlich Willkommen in dem Lernpfad "Bruchteil, Anteil und Ganzes bei der Bruchrechnung"!

Dieser Lernpfad wurde erstellt, um dein Wissen und deine Fähigkeiten im Umgang mit dem Bruchteil, Anteil und Ganzem innerhalb der Bruchrechnung zu verbessern.


Info
In einem ersten Abschnitt erhältst du eine kurze Übersicht über Bruchteil, Anteil und Ganzes. Im zweiten Abschnitt wird es darum gehen, dass du Bruchteil, Anteil und Ganzes in gegebenen Situationen erkennen kannst. Der dritte Abschnitt ist dazu da, dass du Zusammenhänge zwischen Bruchteil, Anteil und Ganzes experimentell herausfinden kannst. Zum Schluss wirst du aus zwei der drei Komponenten die Dritte berechnen müssen.

Was sind nochmal Bruchteil, Anteil und das Ganze?

Info
In diesem Abschnitt kannst du dir nochmal an zwei konkreten Beispielen anschauen, was Bruchteil , Anteil und Ganzes sind.

Immer wenn wir einen Bruch gegeben haben, dann können wir den Bruchteil , den Anteil und das Ganze bestimmen. Als Ausgangspunkt dient das Ganze , von dem nur ein bestimmter Teil betrachtet werden soll (der Bruchteil ). Der Anteil stellt immer das Verhältnis zwischen dem Bruchteil und dem Ganzen dar. Der Anteil ergibt sich, indem der Bruchteil durch das Ganze dividiert wird.

In den folgenden zwei Beispielen, kannst du dir diese drei Teile eines Bruches (Bruchteil , Anteil , Ganzes ) mithilfe von zwei Abbildungen anschauen.

Beispiel

Betrachte eines Kreises.

Darstellung kontinuierliches Ganzes.png

Der gesamte Kreis stellt bei diesem Beispiel das Ganze dar, auf das sich der Bruchteil und der Anteil beziehen.

Das Ganze kann nun in 4 gleich große Teile (4 Viertelkreise) unterteilt werden. Dabei ergeben die 3 farbig markierten Teile zusammen den Bruchteil .

Der Anteil gibt das Verhältnis zwischen dem Bruchteil und dem Ganzen wieder. Es sind 3 von 4 Viertelkreisen farbig markiert (→ )

Im ersten Beispiel wird das Ganze durch eine geometrische Form (Kreis) dargestellt. Du wirst aber auch mit Ganzen arbeiten müssen, welche nur aus einer Menge (Zahl) bestehen. In einem zweiten Beispiel kannst du dir anschauen, was in so einem Fall der Bruchteil , Anteil und das Ganze sind.

Beispiel

Betrachte nun von 12.

Bruchteil, Anteil, Ganzes bei diskretem Ganzen.png
Wie in der Überschrift genannt, ist die 12 das Ganze (12 Sterne).

ist der Anteil und stellt wieder das Verhältnis zwischen Bruchteil und Ganzen dar. Du kannst die 12 Sterne nun in 4 Gruppen mit jeweils 3 Sternen unterteilen (dies wurde auf der linken Seite getan). Wenn du 3 dieser Gruppen nun farbig markierst, so hast du 9 Sterne markiert. Dies stellt den Bruchteil der 12 Sterne dar.


Du kannst im nachfolgenden Lückentext überprüfen, ob du nun weißt, was Bruchteil , Anteil und Ganzes sind.

Wenn du einen Bruch in einer Sachsituation gegeben hast, dann kannst du bei dem Bruch immer Bruchteil, Anteil und betrachten. Das Ganze stellt den dar, auf welchen sich der und der Anteil beziehen. Bei Brüchen wird meist nur ein gewisser des Ganzen betrachtet. Dabei handelt es sich um den Bruchteil. Das Verhältnis zwischen Bruchteil und Ganzem spiegelt sich im wieder.

AnteilTeilAusgangspunktGanzesBruchteil

Bruchteil, Anteil und Ganzes erkennen

Info
In diesem Abschnitt geht es darum, dass du aus beschriebenen Kontexten den Bruchteil, Anteil und das Ganze erkennen kannst. Nur wenn dir das gelingt, kannst du im weiteren Verlauf mit Bruchteil, Anteil und Ganzem rechnen.


1. Was ist mein Bruchteil, mein Anteil und mein Ganzes?



Zusammenhänge erkunden

Info
In diesem Abschnitt kannst du Zusammenhänge zwischen Bruchteil, Anteil und Ganzem erkunden. Du kannst zum Beispiel herausfinden, auf welche Art und Weise sich der Bruchteil verändert, wenn der Anteil gleich bleibt, aber das Ganze größer oder kleiner wird.

2. Erkunde einige Zusammenhänge selbstständig

Gehe bei der nun folgenden Übung wie folgt vor:

  1. Schaue dir die angefangenen Sätze auf der rechten Seite an
  2. Stelle Vermutungen auf, wie sich Bruchteil, Anteil oder Ganzes in den jeweiligen Situationen verändern und schreibe deine Vermutungen auf einem Blatt Papier auf.
  3. Untersuche nun die Veränderungen in den Geogebra Applets. Klicke dafür einfach auf diese und verändere mithilfe der Schieberegler die jeweils zugehörige Größe.
  4. Vervollständige nun die Sätze und vergleiche sie mit deinen vorher aufgeschriebenen Vermutungen.
  5. Überprüfe nun die vervollständigten Sätze. Schaue dir noch einmal die Geogebra Applets genau an, falls die Sätze nicht richtig sind.

Ziel dieser Aufgabe ist es, deine Entdeckungen in Geogebra in Merksätze zu formulieren.

Wird bei einer Aufgabe das Ganze größer, während der Anteil immer gleich bleibt, so . Das Verhältnis zwischen Bruchteil und Ganzem . Wird bei einer Aufgabe der Anteil kleiner, während das Ganze immer gleich groß bleibt, so . Das Verhältnis zwischen Bruchteil und Ganzem . Wird bei einer Aufgabe der Bruchteil größer, während der Anteil immer gleich bleibt, so . Das Verhältnis zwischen Bruchteil und Ganzem . Mithilfe dieses Wissens kannst du bei Aufgaben, bei welchen sich eine der drei Komponenten verändert, während eine zweite gleich bleibt, deine Ergebnisse leichter überprüfen.

bleibt gleich großbleibt gleich großwird das Ganze größerwird der Bruchteil kleinerwird kleinerwird der Bruchteil größer


Mit Bruchteil, Anteil und Ganzem rechnen

Info
Für diesen Abschnitt ist es wichtig, dass du erkennen kannst, was der Bruchteil, Anteil und das Ganze in einer bestimmten Situation ist. Falls du noch etwas unsicher beim Erkennen von Bruchteil, Anteil und Ganzes bist, dann schau nochmal in dem entsprechenden Abschnitt weiter oben nach.

Der Bruchteil ist gesucht

In diesem Abschnitt ist immer der Anteil und das Ganze gegeben und es wird der Bruchteil gesucht. Wenn du nicht mehr weißt, wie du aus dem Anteil und dem Ganzen den Bruchteil bestimmen kannst, dann schaue in die nachfolgende Erklärung.


3. Den Bruchteil berechnen

Berechne nun selbst in deinem Heft den Bruchteil in den dargestellten Aufgaben. Kürze dabei soweit wie möglich.

Nachdem du alle Bruchteile berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe den jeweiligen Bruchteil ziehst.



Das Ganze ist gesucht

In diesem Abschnitt ist immer der Bruchteil und der Anteil gegeben und es wird das Ganze gesucht.

Wenn du nicht mehr weißt, wie du aus dem Bruchteil und dem Anteil das Ganze bestimmen kannst, dann schaue in die nachfolgende Erklärung.

4. Das Ganze berechnen

Berechne nun selbst in deinem Heft das Ganze in den dargestellten Aufgaben.

Nachdem du alle Ganze berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe das jeweilige Ganze ziehst.



Der Anteil ist gesucht

In diesem Teil ist immer der Bruchteil und das Ganze gegeben und es wird der Anteil gesucht.

Wenn du nicht mehr weißt, wie du aus dem Bruchteil und dem Ganzen den Anteil bestimmen kannst, dann schaue in die nachfolgende Erklärung.

5. Den Anteil berechnen

Berechne nun selbst in deinem Heft die Anteile der dargestellten Aufgaben. Kürze dabei soweit wie möglich.

Nachdem du alle Anteile berechnet hast, überprüfe selbst deine Lösung, indem du zu jeder Aufgabe den jeweiligen Anteil ziehst.




Teste zum Schluss dein Wissen

Du kannst bei gegebenen Situationen erkennen, was Bruchteil, Anteil und Ganzes sind und nach welcher dieser drei Größen gefragt ist? Zusätzlich kannst du den Bruchteil, Anteil und das Ganze berechnen, wenn diese gesucht sind?

Dann teste in dem folgenden Quiz dein können und schaffe es Bruch-Millionär zu werden!

Berechne dafür die Ergebnisse auf einem Blatt Papier und kreuze die richtige Antwort an.

Viel Erfolg!

6. Bruch-Millionär