Die Ableitung als Steigung der Tangente

Aus ZUM-Unterrichten

Die Tangente

Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.

Aufgabe 1

a) Im folgenden Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten

Text zum Verstecken

b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie sie sehen.

Text zum Verstecken

c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie sie sehen.

Merksatz


d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) Aufgefallen ist.
Die Tangente als Schmiegegerade
Inhalt

Die Steigung einer Sekante

Aufgabe 1

a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?

Text zum Verstecken

b) Berechnen Sie die Steigung der Sekante in diesem Applet.

Text zum Verstecken

c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.

Der Differenzenquotient
Der Differenzenquotient beschreibt im geometrischen Sinne die Steigung der Sekante und durch die Punkte P und Q und lässt sich wie folgt berechnen:

Die Steigung der Tangente

Aufgabe 2

a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?

Text zum Verstecken

b) Berechnen Sie die Steigung der Sekante in diesem Applet.

Text zum Verstecken

c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.

Der Differenzenquotient
Der Differenzenquotient beschreibt im geometrischen Sinne die Steigung der Sekante und durch die Punkte P und Q und lässt sich wie folgt berechnen: