Lineare Funktionen/Station 3

Aus ZUM-Unterrichten
< Lineare Funktionen
Version vom 2. November 2018, 21:14 Uhr von Christian (Diskussion | Beiträge) (Textersetzung - „\{\{Weiter\|([^|]+?)\|([^|]+?)\}\}“ durch „{{Fortsetzung|weiter=$2|weiterlink=$1}}“)


Station 3: Beschreibung allgemeiner Geraden

Gerade

In Station 2 hast du gelernt, wie man die Steigung von Geraden im Koordinatensystem bestimmen kann.

Allerdings haben wir bislang immer nur solche Geraden betrachtet, die Graph einer proportionalen Funktion waren, also Geraden, die durch den Ursprung verlaufen.

In dieser Station lernst du, wie man beliebige Geraden durch eine Funktionsgleichung beschreiben kann, also auch solche, die keine Ursprungsgeraden sind.


Sind solche Geraden überhaupt relevant?

Starte die App und überlege genau, bevor du die Fragen beantwortest.


Ursprungsgeraden reichen nicht!

Ziehe die Begriffe unten in die richtige Lücke.

Bis jetzt haben wir immer nur Funktionen Zusammenhänge der Form betrachtet. Die Graphen zu diesen Funktionen waren immer Geraden, die durch den verlaufen.

Wie du eben gesehen hast, gibt jedoch Situationen, die mit solchen Funktionen und Geraden werden können.

Dies ist vor allem dann der Fall, wenn beim x-Wert 0 der zugehörige y-Wert ist. In unserem Fall bedeutete das, dass zum Zeitpunkt t=0 die zugehörige Wassermenge nicht 0m3, sondern zum Beispiel 400m3 war.

Trotzdem stellt der Graph noch eine dar, da die Wassermenge immer noch zu- oder abnimmt.Diese ist jedoch im Vergleich zur nach oben oder unten verschoben.

Wie aber sieht eine Funktionsgleichung aus, die eine "allgemeine" Gerade richtig beschreiben kann?

UrsprungGeradeUrsprungsgeradengleichmäßignicht mehr beschriebenproportionalernicht gleich 0


Lineare Funktion - Funktionsterm

Wir wissen bereits, wie der Funktionsterm von Funktionen aussieht, deren Graphe eine Ursprungsgerade ist:

Jetzt stellt sich aber die Frage, wie denn dann ein Funktionsterm aussehen muss, der jeder beliebige Gerade beschreiben kann?

Um dies herauszufinden, folge bitte den Anleitungen in der nächsten App. Viel Erfolg!


Untersuchen


Feuerwerks-gif

Ergebnis:

Jede beliebige Gerade im Koordinatensystem kann durch die Funktionsgleichung beschrieben werden.


Alle diese Funktionen, deren Graph eine Gerade ist
und deren Funktionsgleichung die Form

heißen lineare Funktionen.


Merke

Jede Funktion, die durch die Funktiongleichung beschrieben wird, heißt lineare Funktion. Der Graph einer linearen Funktion ist immer (irgend) eine Gerade.

Geradengleichung
  • Man nennt t den y-Achsenabschnitt der Geraden.
  • m bezeichnet die Steigung der Geraden.

  • Verläuft der Graph durch die Punkte P(xP/yP) und Q(xQ/yQ), so gilt für die Geradensteigung: .

Beispiel Bei obiger Gerade gilt:

  • y-Achsenabschnitt:
  • Steigung:
Damit lautet die Funktionsgleichung:


Übungen zum Verständnis

10. Ordne zu

Starte die App und entscheide, welche der dargestellten Graphen zu einer linearen Funktion gehören!

(leicht)

Aufgabe 6

Schreibe in den Schulheft hinter jede Aussage, ob sie richtig oder falsch ist. Begründe deine Entscheidung.

  • "Jede lineare Funktion ist eine proportionale Funktion."
  • "Jeder proportionale Funktion ist eine lineare Funktion."


11. Finde die Funktionsgleichung!

Starte die App und entscheide, welcher Funktionsterm den dargestellten Graphen richtig beschreibt.

(nicht ganz ohne)


--- aktuelle Meldung: Entwarnung im Bergwerk ---

Das Bergwerk hat ein Gesamtvolumen von 1800m3 und steht bereits völlig unter Wasser, als es endlich gelingt, neue Pumpen in Betrieb zu nehmen. Die neuen Pumpen haben eine max. Pumpleistung von 150m³ Wasser pro Stunde.
Wie lange wird es dauern, bis das Bergwerk wieder frei von Grundwasser ist?


Entscheide für dich selbst, in welchem Schwierigkeitsniveau du die Aufgabe bearbeiten möchtest!

1. Version der Aufgabe - mittlerer Schwierigkeitsgrad

Balance mit Stab

2. Version der Aufgabe - hoher Schwierigkeitsgrad

Balance


Alle Aufgaben erledigt? Dann kann's weitergehen!

<metakeywords>ZUM2Edutags,ZUM-Wiki,ZUM.de,OER,Lernpfad Lineare Funktionen,Lernpfad,Lineare Funktionen,Lineare Funktion</metakeywords>