Trigonometrische Funktionen/Einfluss von a
FAQ
Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.
Einfluss von a
Wir betrachten nun den Einfluss von in
- .
Die Datei [INVALID] wurde nicht gefunden.
- Öffne dieses GeoGebra-Applet. Mit dem Schieberegler kannst du den Wert von ändern.
- Stelle den Schieberegler auf ein. Wie ändert sich der Graph?
- Überlege dir, wie sich die Werte und sowie auf den Graphen auswirken und überprüfe deine Vermutung.
- Formuliere das Ergebnis deiner Untersuchungen.
Man erhält den Graph der Funktion
aus dem Graph der Sinusfunktion durch Streckung oder Stauchung in Richtung der -Achse. Genauer:
- Ist der Betrag von größer als eins, so wird der Graph der Sinusfunktion in -Richtung mit dem Faktor Betrag von gestreckt.
- Ist der Betrag von kleiner als eins, so wird der Graph der Sinusfunktion in -Richtung mit dem Faktor Betrag von gestaucht.
- Falls negativ ist, so wird der Graph zusätzlich an der -Achse gespiegelt.
Hier genügt es, wenn du diese Aufgabe mit Hilfe von Plausibilitätsüberlegungen gelöst hast. Eine formale Begründung war nicht notwendig.
Eine mögliche formale Begründung:
mit
d.h. die Nullstellen bleiben gleich. Ferner wird jeder Funktionswert mit dem gleichen Faktor multipliziert. Ist der Betrag dieses Faktors größer als 1, so wird der Graph in Richtung der y-Achse um diesen Faktor gestreckt, ist er kleiner als 1, so wird er entsprechend gestaucht. Ist der Faktor negativ, so wird der Graph zusätzlich an der x-Achse gespiegelt.
Teste dich! Klicke im folgenden Quiz auf die richtigen Zuordnungen!
Nun betrachten wir den Einfluss von in
- .
Die Datei [INVALID] wurde nicht gefunden.
Die allgemeine Kosinusfunktion verhält sich bei Variation von genauso wie die allgemeine Sinusfunktion.
Hefteintrag: Beachte, dass in der Lösung zur Aufgabe A1 ein Hefteintrag "versteckt" ist!