Eigenschaften ganzrationaler Funktionen

Aus ZUM-Unterrichten
Willkommen beim Lernpfad zu den Eigenschaften ganzrationaler Funktionen

Zur Zeit beschäftigen wir uns mit ganzrationalen Funktionen, wobei du die einfachste Form, die Potenzfunktionen, bereits kennengelernt hast. Von Interesse ist hier vor allem der Verlauf einer Funktion in Abhängigkeit des Funktionsterms. Im folgenden sollen die bereits bekannten Informationen über die Potenzfunktionen auf allgemeine ganzrationale Funktionen übertragen werden.


Voraussetzungen

  • Du kannst den Verlauf des Funktionsgraphen einer Potenzfunktion anhand des Funktionsterms beschreiben und skizzieren.
  • Du kannst den Funktionsterm einer Potenzfunktion mit Hilfe eines Gleichungssystems ermitteln.

Ziele

  • Du erkennst, wann eine ganzrationale Funktion vorliegt, und wann nicht.
  • Du kannst den Verlauf für betragsmäßig große x-Werte des Funktionsgraphen einer gebrochenrationalen Funktion anhand des Funktionsterms beschreiben.
  • Du kannst den Funktionsterm einer gebrochenrationalen Funktion mit Hilfe eines Gleichungssystems ermitteln.


Hinweise zur Bearbeitung

1. Hefteintrag

Den groben Hefteintrag hast du bereits bekommen. Ansonsten kannst du ihn dir hier herunterladen. Vorlage:Versteckt Fülle die noch leeren Felder mit den im Lernpfad gewonnenen Informationen aus.

2. Bearbeitung

  • Bearbeite die Aufgaben mit einem Mitschüler.
  • Bearbeite die Aufgaben der Reihe nach.
  • Überprüfe dein Wissen am Ende jedes Abschnittes durch die Beispielaufgaben
  • Nutze die versteckten Hinweise erst, wenn du mit deinem Mitschüler sicher nicht mehr weiter kommst. Versuche so lange wie möglich ohne die Hinweise auszukommen.
  • Vergleiche deine Ergebnisse mit den Lösungen erst nachdem du den Abschnitt fertig abgeschlossen hast.

Wichtige Definitionen

Polynom
Terme, die aus einer Summe von Potenzen (mit Exponenten aus ) bestehen, heißen Polynome. Der höchste vorkommende Exponent entspricht dem Grad des Polynoms.

Beispiele:

2x4 - 3x3 + x - 5 ist ein Polynom vom Grad 4

-3x12 + 14x2 - 20 ist ein Polynom vom Grad 12

Ganzrationale Funktion
Funktionen, deren Funktionsterme f(x) Polynome sind, nennt man ganzrationale Funktionen. Der Grad des Polynoms ist dann auch der Grad der Funktion.

Beispiel: ist eine ganzrationale Funktion vom Grad 7

Allgemeine Funktionsgleichung und Koeffizienten
Der allgemeine Funktionsterm einer ganzrationalen Funktion vom Grad n ist

Die ak nennt man Koeffizienten (0 k n).


Beispiele:

mit a2 = 3, a1 = -5, a0 = 7

mit a4 = -2, a3 = 0, a2 = 0, a1 = 3, a0 = 0

Aufgabe

Entscheide ob folgende Funktionen ganzrational sind. Gib gegebenenfalls den Grad und die Koeffizienten an.

a)
b)
c)
d)


Verhalten ganzrationaler Funktionen für betragsmäßig große x-Werte

Gerader Funktionsgrad

Aufgabe

Gegeben sind die Funktionen und

a) Zeichne die Graphen der Funktionen mit GeoGebra in ein gemeinsames Koordinatensystem.
b) Welcher Unterschied bzw. welche Gemeinsamkeit fällt dir bezüglich des Verhaltens für betragsmäßig große x-Werte auf?
c) Welcher Summand im Funktionsterm ist vermutlich ausschlaggebend für das Verhalten? Hilfe: Vorlage:Versteckt
d) Welche Fälle müssen beim Koeffizienten dieses Summanden unterschieden werden? Wie wirken sich diese auf das Verhalten aus?
e) Zeichne weitere ganzrationale Funktionen mit geradem Funktionsgrad und verschiedenen Koeffizienten in das Koordinatensystem und überprüfe damit deine Vermutungen.
f) Fasse deine Ergebnisse zusammen und ergänze den Hefteintrag an den entsprechenden Stellen.

Ungerader Funktionsgrad

Aufgabe

Gegeben sind die Funktionen und

a) Untersuche die beiden Funktionen wie im vorherigen Abschnitt zum geraden Funktionsgrad
b) Fasse deine Ergebnisse zusammen und ergänze den Hefteintrag an den entsprechenden Stellen.


Übungsaufgaben

Vorlage:Arbeiten

Vorlage:Arbeiten

Vorlage:Arbeiten

Rationale Funktionen
Finde die Paare aus je einem Funktionsgraph und dem dazu passenden Funktionsterm.

A3.a.png f(x)= -3x5 + 2x3 + 1,6x + 2
A3.b.png g(x) = -3x2 - 4x + 1
A3.c.png h(x) = (2x2)3 - 1,6x5
A3.d.png i(x) = (-0,7 x)3 + 0,2x2 - 0,4
A3.e.png j(x) = 3x7 + x3 + x
A3.f.png k(x) = x (x2 + 2x) + 0,5
A3.g.png l(x) = -(2x4 + 3,4x2)
A3.h.png m(x) = 2x + 3