Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 25: | Zeile 25: | ||
{{Lösung versteckt|1=[[Datei:Differerenzenquotient Hilfe.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}} | {{Lösung versteckt|1=[[Datei:Differerenzenquotient Hilfe.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}} | ||
{{Lösung versteckt|1= | {{Lösung versteckt|1= | ||
{{Box|Der Differenzenquotient|Die | {{Box|Der Differenzenquotient|Die Steigung des Graphen einer linearen Funktion kann mit Hilfe des Differenzenquotienten berechnet werden. | ||
Ist eine Funktion <math>f</math> auf einem Intervall <math>[a;b]</math> definiert, so gibt der Differenzenquotient | |||
<math>\frac{\Delta{y}}{\Delta{x}}=\frac{f(x_0)-f(x)}{x_0-x}</math> die Steigung <math>m</math> der Geraden durch die Punkte <math>A=(a|f(a))</math> und <math>B=(b|f(b))</math> an. | |||
Die Differenzen können auch als <math>\Delta{y} </math>und <math>\Delta{x}</math>geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte. |Merksatz}}|2=Lösung anzeigen|3=Lösung verbergen}} | |||
c) Berechnen Sie in [[/Aufgabe 2.2 b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/> | c) Berechnen Sie in [[/Aufgabe 2.2 b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/> |
Version vom 20. August 2019, 20:28 Uhr
Die Tangente
a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten
b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
e) Treffen Sie eine Aussage über die Steigung der Tangente und die Steigung der Funktion im Berührpunkt mit der Tangente.
Die Steigung einer Sekante
a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an.
b) Geben Sie an wie sich die Steigung einer Sekante der Funktion durch die Punkte und allgemein berechnen lässt.
Die Steigung des Graphen einer linearen Funktion kann mit Hilfe des Differenzenquotienten berechnet werden.
Ist eine Funktion auf einem Intervall definiert, so gibt der Differenzenquotient
die Steigung der Geraden durch die Punkte und an.
Die Differenzen können auch als und geschrieben werden. Der griechische Großbuchstabe Delta steht hier als Symbol für die Differenz der x- und y-Werte.c) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
Die Steigung der Tangente
Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P.
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte dem Applet.
Schritt 1 | |||
Schritt 2 | |||
Schritt 3 | |||
Schritt 4 |
Beschreiben Sie auf was zu achten ist, wenn mit Hilfe der Steigung der Sekante durch zwei Punkte der Funktion die Steigung der Tangente möglichst genau bestimmen will.