Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen
Markierung: 2017-Quelltext-Bearbeitung |
Markierung: 2017-Quelltext-Bearbeitung |
||
Zeile 29: | Zeile 29: | ||
==Die Steigung der Tangente== | ==Die Steigung der Tangente== | ||
<br />{{Box|Aufgabe 3|Wir betrachten die Funktion <math>f(x)=x^3+x</math>, den festen Punkt <math>P(x_0|f(x_0))</math> mit <math>x_0=1</math>und den flexiblen Punkt <math>Q(x|f(x))</math>. | <br />{{Box|Aufgabe 3|Wir betrachten die Funktion <math>f(x)=x^3+x</math>, den festen Punkt <math>P(x_0|f(x_0))</math> mit <math>x_0=1</math>und den flexiblen Punkt <math>Q(x|f(x))</math>. | ||
<br/> | <br/> |
Version vom 14. August 2019, 11:48 Uhr
Die Tangente
a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten
b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
Die Steigung einer Sekante
a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an.
b) Geben Sie an wie sich die Steigung einer Sekante durch die Punkte und allgemein berechnen lässt.
c) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
Die Steigung der Tangente
Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
Nähern Sie den Punkt Q in 4 Schritten so nahe wie es das Applet zulässt dem Punkt P.
Halten Sie die Schritte in folgender Tabelle schriftlich fest. Entnehmen Sie die benötigten Werte dem Applet.
Schritt 1 | |||
Schritt 2 | |||
Schritt 3 | |||
Schritt 4 |
Schätzen Sie in folgenden Applets durch Anlegen eines Stifts auf den Bildschirm die Steigung der Tangente im Punkt P.
Lassen Sie sich dann die Lösung anzeigen.