Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Markierung: 2017-Quelltext-Bearbeitung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 17: Zeile 17:
==Die Steigung einer Sekante==
==Die Steigung einer Sekante==
[[Datei:Beispielbild Sekante.png|rand|459x459px]]
[[Datei:Beispielbild Sekante.png|rand|459x459px]]
<br />{{Box|Aufgabe 2|a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert? <br/>  
<br />{{Box|Aufgabe 2|a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an. <br/>  
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}


b) Berechnen Sie in [[Aufgabe 2 b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/>
b) Geben Sie an wie sich die Steigung <math>m</math> einer Sekante durch die Punkte <math>P(x_0|f(x_0))</math> und <math>Q(x|f(x))</math> allgemein berechnen lässt. <br/>
{{Lösung versteckt|1=[[Datei:Differerenzenquotient Hilfe.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}}
 
c) Berechnen Sie in [[Aufgabe 2 b)|diesem Applet]] die Steigung der Sekante durch die Punkte P und Q. <br/>
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}}
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf. <br/>
{{Lösung versteckt|1=[[Datei:Differerenzenquotient Hilfe.png|rand|600x600px]]|2=Hilfe anzeigen|3=Hilfe verbergen}}
|Arbeitsmethode
|Arbeitsmethode
}}
}}

Version vom 14. August 2019, 10:53 Uhr

Info
In diesem Abschnitt werden Sie sich die Grundvorstellung der Ableitung als Steigung der Tangente selbst erarbeiten. Tangenten haben Sie bereits in der Sekundarstufe 1 im Zusammenhang mit Kreisen kennengelernt. In diesem Abschnitt wird diese bereits vorhandene Vorstellung auf das analytische erweitert. Als Vorwissen sollten Sie über Kenntnisse von Sekanten, linearer Funktionen und des Differenzenquotienten verfügen. Sollten die Hilfen auf dieser Seite nicht genügen, wird auf die Seite Vorwissen verwiesen.

Tangentensteigung Bild.png

Die Tangente

Aufgabe 1

a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten

Text zum Verstecken

b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.

Text zum Verstecken

c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.

Merksatz


d) Ergänzen Sie zu den Gemeinsamkeiten aus Aufgabe a) was Ihnen in Aufgabe b) und c) aufgefallen ist.
Die Tangente als Schmiegegerade
Die Eigenschaft der Tangente sich dem Graphen einer Funktion in einer kleinen Umgebungen anzupassen, wird als die ,,Schmiegeeigenschaft" der Tangente bezeichnet.

Die Steigung einer Sekante

Beispielbild Sekante.png


Aufgabe 2

a) Geben Sie die Definition einer Sekante, wie Sie sie im obigen Bild zu sehen ist an.

Text zum Verstecken

b) Geben Sie an wie sich die Steigung einer Sekante durch die Punkte und allgemein berechnen lässt.

Differerenzenquotient Hilfe.png

c) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.

Text zum Verstecken

Die Steigung der Tangente

In dieser Aufgabe werden Sie sich die Berechnung der Steigung von Tangenten über den Differenzenquotienten herleiten.


Aufgabe 3

Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
a) Nähern Sie den Punkt Q so nahe wie es das Applet zulässt dem Punkt P.
Tuen Sie dies, indem Sie in 4 Schritten die Größe verkleinern.
Nutzen Sie hierfür die folgende Tabelle und entnehmen Sie die benötigten Werte dem Applet.


Aufgabe 4

Schätzen Sie in folgenden Applets durch Anlegen eines Stifts auf den Bildschirm die Steigung der Tangente im Punkt P.
Lassen Sie sich dann die Lösung anzeigen.

Applets