Benutzer:PascalHänle/Grundvorstellungen zum Ableitungsbegriff/Die Ableitung als Steigung der Tangente: Unterschied zwischen den Versionen
KKeine Bearbeitungszusammenfassung |
|||
Zeile 28: | Zeile 28: | ||
==Die Steigung der Tangente== | ==Die Steigung der Tangente== | ||
In dieser Aufgabe werden Sie sich die Berechnung der Steigung von Tangenten über den Differenzenquotienten herleiten. | In dieser Aufgabe werden Sie sich die Berechnung der Steigung von Tangenten über den Differenzenquotienten herleiten. | ||
<br />{{Box|Aufgabe 3|a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert? <br/> | <br />{{Box|Aufgabe 3|Wir betrachten die Funktion <math>f(x)=x^3+x</math>, den festen Punkt <math>P(x_0|f(x_0))</math> mit <math>x_0=1</math>und den flexiblen Punkt <math>Q(x|f(x))</math>. | ||
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert? <br/> | |||
{{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | {{Lösung versteckt|1=Text zum Verstecken|2=Lösung anzeigen|3=Lösung verbergen}} | ||
Version vom 7. Juli 2019, 15:15 Uhr
Die Tangente
Sie hatten bereits in der Sekundarstufe 1 mit Tangenten zu tun und haben diese im Zusammenhang mit kreisen kennengelernt.
a) In diesem Applet sehen Sie zwei verschiedene Tangenten. Nennen Sie Unterschiede und Gemeinsamkeiten der beiden Tangenten
b) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
c) Zoomen Sie in diesem Applet in den Berührpunkt der Tangente und beschreiben Sie was Sie sehen.
Die Steigung einer Sekante
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?
b) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.
Die Steigung der Tangente
In dieser Aufgabe werden Sie sich die Berechnung der Steigung von Tangenten über den Differenzenquotienten herleiten.
Wir betrachten die Funktion , den festen Punkt mit und den flexiblen Punkt .
a) Wie ist eine Sekante,wie Sie sie im obigen Bild sehen können, definiert?
b) Berechnen Sie in diesem Applet die Steigung der Sekante durch die Punkte P und Q.
c) Stellen Sie die allgemeine Gleichung zur Berechnung der Steigung von Sekanten auf.