Zentrische Streckung/Abbildung durch zentrische Streckung/2.Station Fortsetzung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Leonie Porzelt
Keine Bearbeitungszusammenfassung
Main>Leonie Porzelt
Keine Bearbeitungszusammenfassung
Zeile 104: Zeile 104:
:Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
:Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
<div style="border: 2px solid #ffd700; background-color:#ffffff; padding:7px;">
[[Bild:Porzelt_Panto-2.jpg|left]]
<br>
:'''k''' bezeichnet man als den '''Streckungsfaktor'''. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
:'''k''' bezeichnet man als den '''Streckungsfaktor'''. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.
<br>
</div>
</div>
<br>
<br>
<div align="right">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]]</div>
<div align="right">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/3.Station|Weiter zur 3. Station: Berechnung der Streckenlängen und des Streckungsfaktors]]</div>
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/2.Station|Zurück zur 2. Station: Streckungsfaktor]]</div>
<div align="left">[[Benutzer:Leonie Porzelt/Abbildung durch zentrische Streckung/2.Station|Zurück zur 2. Station: Streckungsfaktor]]</div>

Version vom 3. Juli 2009, 20:31 Uhr


Fortsetzung der 2. Station: Streckungsfaktor

Um herauszufinden was das k bedeutet, musst du dir jetzt bei dieser zentrischen Streckung anschauen, wie
sich die Streckenlängen verändern, wenn du k veränderst. Dazu musst du dir die Streckenlängen anzeigen lassen.


Die Datei [INVALID] wurde nicht gefunden. Was verändert sich? Orientiere dich dabei an diesen Fragen:

1 Wie verändert sich die Streckenlänge ZB?

Sie bleibt immer gleich.
Sie ist variabel.

2 Wie verändert sich die Streckenlänge ZB'?

Sie bleibt immer gleich.
Sie ist variabel.

3 Wie verhält sich k?

Es bleibt immer gleich.
Es ist variabel.


Die Werte, die sich aus der Änderung von k ergeben, wurden in zwei Tabellen zusammengefasst.
In der linken sind die Werte für k von 2 bis 0, in der rechten für k von -2 bis 0.


Arbeitsauftrag:
1. Betrachte zunächst nur die linke Tabelle und stelle eine Vermutung auf, wie sich die Länge von ZB' ändert im Vergleich zur Länge von ZB?
(Tipp: Betrachte auch den Wert von k!)
2. Vergleiche die Zeilen mit der selben Hintergrundfarbe! Was haben sie gemeinsam? Was sind die Unterschiede?
k ZB ZB'
2 4 8
1.5 4 6
1 4 4
0.5 4 2
0 4 0
k ZB ZB'
-2 4 8
-1.5 4 6
-1 4 4
-0.5 4 2
0 4 0


Hier kannst du deine Vermutung mit der von Dia vergleichen:
Vorlage:Versteckt


Dia ist nach ihren Vermutungen total verwirrt. Sie versteht nicht warum der Wert von ZB' gleich bleibt, wenn sich das Vorzeichen von k ändert.
Vielleicht kannst du ihr helfen, indem du ihre Fragen beantwortest:


1 Kann eine Streckenlänge ein negatives Vorzeichen haben?

nein
ja

2 Wie kann man eine negative Zahl in eine positive Zahl umwandeln, sodass der Wert gleich bleibt, sich jedoch aber eine positive Zahl nicht in eine negative Zahl umwandelt?

durch Quadrieren
mit Hilfe von Betragsstrichen
durch Multiplikation mit -1


Prima! Dank dir versteht jetzt Dia, wie die Werte für ZB' entstehen.
Mit deiner Hilfe und ihrer Vermutungen kann sie eine allgemeingültige Aussage machen.
Teste durch Einsetzen der richtigen Wörter, ob auch du dahinter gekommen bist:

Die Länge von ZB ist |k|-mal so lang wie die Länge von ZB'.


Hier siehst du was das k bedeutet. Merke es dir, denn später wirst du darüber abgefragt!
Porzelt Panto-2.jpg


k bezeichnet man als den Streckungsfaktor. Er gibt den Maßstab an, in dem das Bild vergrößert wurde.