Trigonometrische Funktionen/Anwendungen 2: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
KKeine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Keine Bearbeitungszusammenfassung
Markierung: 2017-Quelltext-Bearbeitung
Zeile 31: Zeile 31:
Maike meinte nun, dass eine Gondel sicher auch eine Sinuslinie beschreibt. Marie und Pablo wollten dies natürlich erklärt haben. Unterstütze sie, indem du Ihnen mit dem folgenden GeoGebra-Applet bei der Lösungsfindung hilfst.
Maike meinte nun, dass eine Gondel sicher auch eine Sinuslinie beschreibt. Marie und Pablo wollten dies natürlich erklärt haben. Unterstütze sie, indem du Ihnen mit dem folgenden GeoGebra-Applet bei der Lösungsfindung hilfst.


 
<ggb_applet width="1000" height="405" version="3.2" ggbbase64="UEsDBBQACAAIAHOYKD4AAAAAAAAAAAAAAAA1AAAAZDViY2FmYjcxMTczYjY5MTI1YTVlMTk0YzFmNDI5ZDRcUHJhdGVyX3JpZXNlbnJhZC5qcGecundUU923BZoQIDSpQekttNCkS+8tdEJHVKoQECSAICBdFCKE3iKdhA4CgoCAgnTpVbp0pCtFpPr4vvu7977x3vvjvbcz9hhnnHNGxlnnzDXXnGvvv9N/lwDUulpwLQCQAAAA3vwAf+cA6gASYmIwMREJGAwmJSUho4DcoiAnp2CkpaOCsDKxs7EysbBwcIvwcXAJQVlY+O/BhETFJCUl2flkFWXEFUQkJMX/+RMgKSkpBTkFw61bDOKcLJzi/5/H3zYADQkwFHgNAnIBCGiAIBrg304A+81zEgH/HYD/DCABiJCIGExCSkZ+c0M9NYAACAIREIKIiAgJb64G31wHENIQ0XKKqRLTmdiDuVAQ8fDEfBKoWk07PWL0J7eEg3cEKdntOwyMTDy8fPwwAUkp6XsysnLqGppa2jpwXVMzcwtLK2sbRyfnxy6uSDcf32d+/s8DAiNfRr16HR2DTkpOSU1Lz8jEFhTi8EXFJaVlte/r6j80NDZ9/NLR2dXd09v3dWx8YnLq2/TM7PLK6tr6xuaPre1fh0fHJ79P/5yd/xMXEAAC/vf4f4yL5iYuAkJCECH4n7iABP7/3EBDSMQpRkyragK2R9FxiYeTQNQS82vaSaESiJ/0Dt6jZLe5JZd5fv0T2r+R/b8LLOL/V2T/E9j/xjULoAABbz4eiAagDDgpgyHv3ZrzGcb7MrwxZGHyDHaT5bM6P9mVH2u8DbKbRHpGJFF7Ph0xg+7d0SCy1QrYsVj9oAFSyA2ZvNdk8WGd1C515UJ/PYyQAGxr/ocjgpoiyCoxYbHgrb+AkDN5Vk7/xCQkx1on7nn7TmzoeZnfdOVoseRoZyxjRA2YYcdstSV10iFKFsQIkuK20Ok4jWvOyf4LoLO0j0EolgB+E2Q3R+d9eLLP5CK73VFacfGDifRoqOPUMFR3wcGIEJQjU3ZKQ7rsOgdt5PaVlJkX8VmjlTgwVVlKYC4KKEpBZXzNbjvSKekXtTijCp53yKsbQg+sDAI9A9oUy8w5vGTK7pbMFbxUcSITFRWQCPDrfcA53bit5aXM1JxwIuRGA+cidYRyxH037M70f0aVVKv1J8VxHXx5LDnxPsf+bUw0OAksmTDbfquDO0+c2svq5FgG103jVnrxxTjNW1xiDHfvsGbAb5Mtg7di+n6ZjQjE6ejANMenOe/KtZrxjX8wlGEUbOgNuH5G0PGM7ozopd1R2PNhz1zd0Xrjr4ds+nH6n2NaIgU2B+KzgkyciEiFuJP2THLTGYWzlsxTxjyVI35Gjrda1Si73fJuo1gGHHe5CjlrBfkWqojuCx8Iq238+GAIIDwpSZvanl3i96q6am9TXpvCJj4rYSQZMP5ZODFaovmRdrXsRRuV4V/A6h9ENcST8/OF5Bvoq7gAmSerkLkAkVVS2TgcwB7O2Fautrq3xWKyRnyGl7kS2B9pRnXLEGB1RIzfGt+PZoOZutP0PGHvfku/5j2NrzEXvxrO8AI7WorgrfLlU+/7k+FcsEOv+hw/YWB9JgLOuix25whX17rfHixCI30bAiI29zb55sZK4W8m6V4st02TroU889oai7G2y8TI3WYAz3G9d6R7+cyELy2u76EX0opYLjjbj0M++uztt9m3Lo0PNYxOw67cxmw1VvsTQ/2nk5NuITV5WmjSphN/tZuclgo+Y5hm3j1vGU0MF50vPPkLYPLYebxGQnf6F9BpmX8+IfE9APO+QsVuV0S27Tq1nEyT4KV+YPL8OA1C8HW8Ly2MEswfmiH1Av5RtD2cMNC3pAqKXpdu5MbEFiZa18y3iNcGr1DecwR+qntCnM930aHYWJZ+R5Ba1u7+OP39wca0FYMKehIGpcgxrDnU+UHsvtEi9HIl+7ixQshy4DFPoTwqDLAplX/raxOo37mv2+AxCcODs6jPfsAvm+/o7Yyop6mPWo0IitYPz5iaVmLHfHG8FeE+cDhWzRUwCDU2kMQ6cHkiy8Smsrozk/XVJCgmuAmel/4U0xcgQtAw2iIcsnwMHNFOcVxoGD9QFT94D/I4jAWJW0lLGAFidXVhYQjEmDERHtFDkJ/Dh5Hg5NjbgQtdPwJkLy5spy7MyZANH8Yvs376dPJysajGQh3XxJzSvRcmO+xzXLoc8wCUNhSq3F0qwT0KLVj+tu4FfqSOaJdQW4MhqN7pj95OW3WvKeV+A9HRApgOj5XVzw10CfesLmZwJK1upGSxG21ZQjWiRN+EH5fX93JgBr1tEFbJ48pTBUGO1FwKVfB21quyP/aHseNWgi9a426repMUXc2+T7jPLsbeqRhS732P05t0c7Z26I9zggynT4K2qgV0glMn5bCHpQQfsuyw8RfwNm+lIG1D5n3L0l+A77Oyuf2q118V6hR7/oxbDJp8C7G9GC3Z1ZZMeoCisOrxmcq77wPtdvaeeUIzH1/pvtfbPQI4Xnkvkg1thjt6TMs6E7+qIP0txdHQ8DolRns5+WzsYfWFxOkQeBxb0tBgSvc7KLQzdvXc2ENkU/lzxt0GGym7h0HRNCoB2qyved8/I8+oSjQ3b8jvDckyLzmepn6xPn+RRZZauTJLb6JCyOJYefuJCHrk+4OMUceGZRXG2YDTYnk38XxmFcIgso+UdwDG8IMxjNkdfm3kcwgs1YwSQOmK/aJp29IcswTENje3ilyuKtu8KBFxqcqwvH4oGvyaXnzriCaqmT3xBvHVA1QP6wRXE6cwZiIOjeMiy7bacpSBBJriVlIkCTXpitXM3Nf0FbXOqopIUgqtwInp8ozf5QGOjIKeuvf41vv+AnbMdso0Zm4xqu/6nFvkSbGM9Agk/CoP1rwNEoC9PNWy1rFl4UpGp5touRJ9obWBNs/GSP5oYI0aVwzvvXKrqzYi4U+6c6t7AlzcWDBA/t39nmv17M8h8YOrUYvVqBuyFwtTflTpNGN79ZLBKbqcLgk16CZU0/LQJYMMAx/WVTGd9OByf5wjSaApy01ZUHKfUaFAw4Nb/R3713c1yYiEMmfhlMPQVq1UXs6022udnagtrYtYtAX6gexooKOAyg9txwOLXdyRUGHCqncsbXCZYIqVduYXlyr5zan364scwuRUQrkZkXp2kvhPSDh6TALq7xlm8WyhoqanFUcISifvelTfGKtWBkAAekGfK5VcOz+MlYKFihtC6sbUmh4ST7cz54gXX/RfSxGNCwxDPRm6vYzqlbjeOdIIvzIEBaErfT+9CHWNfrFk38Vr9iB68CftU4YhsZ05SIzfa/L6Bro/5tL63sDZQFOz5fBjKWnBzOwUj0/cT41vCVu8Tw6ucJmjV3LXeCyCMuBNwKoho23H6LruSb4cp/7m5io5dTGx6GPu4Kl8c8LQdUczYoUJuYNAoPQ1tJJwHKY6RSDXAjQhJKUuhYK/AA3Q5S8Ig94+0q14EDYvo+gubZXJLfbJ3wU7g7WnjWwu/nk+affu2UeVwnzyHDGr+pFR8Wg23U3F5xxMJhxzkb2eqRT4gbgNF391LM3nl8dSRFg/f2Je6mYKP7561yRDIOsO2d3M36E0Sxa9XyjvRzH0VTrsx65V6OUYERemuRYyJvzewri9fyCPIkgy+kVzWfJqpuEsqUlIm2M05IteY19sQ+4zczPUyfmYdTuT4dclCcfY3yflnwUo1aLYEyouYiz3CNyfdfgKY24JWiHnJ7n5++zKFA1Mc36pw2I9OU52kTU2etJs/mtHmM/XZc0QJPXXkuHSHcPBV9FF0KbG9pQ9o/0cZd30XeroNpCPi6zidp8sBHhg2Ee2VgKIZ4/Seu5m2raSwZzFZDe9m+CjXbyBxK2tpAQac7atLZGFjCwYiAWeMyHmHRK6potbtdooYauurEgM2DjQGERadHFttoRvIghr3DGDCznXJLm9cPaWm3RWiNetZV7n8D0pcc7Py7o4N+3rEpfYmZh4PTHmqCHkbYgcLcv7C3A9KWoUPgIe44CvJTvh3Cj9ZmdNOzmX+sfDRQlUSXPfLmK9UCflQz2MOGtxpZQK+dTKg5ecdlguvMxW76Xyl3zsunA9cXaIa5Eta1GV/kh/ii/V1s7ZFKoOC6atc1PLOlk4Q6dlHHivefUFvujr7v0cBQ4M/hJ1NhliEuUF9pyUvCPolSXNzFIpvr6K5hWnO4oQyzFQFCJ+kUiSUctCuZWz+H0ZUXmUSlNwa/PzX4BNeZtmZ4hZ2LohcNim+reOo8WHMyuKVL53f5hSS3qX4x43pTHH7huiKYGl+2PyOqtpogBCaJgMx6SrS3deFIa8aoqvRPG9xcGMU00iOcGAjLE4vOgDZZHmemP4y8QjipzsODP57qDwPZvbXdj5Lq6QvY9OExICaruNFGXi5bmbCAkjwwxyjoFlreeDOrMR+0DqT4biRGbjEbbdgxxD42FNK+8aH0QCiNRIQJgTpDz1jBgX1oBw3AChRoAk7S1KNuAjKOuc9w9Uh2ORkiSkG2hkoWSbH0rnljQa4IesQ5gCcHhcnqomxJjARE8TwAMxUenGEat/VM05K1e8A/SCqZziOH4N6low+8O+2wSsBopwg3JR1qXuElfTWdcMlZesC0GB5vffFMTVijMZjZg1Vn5FBDHuESYAxqir5ADeBkZMgy/05JctWQJz8Ua3Mud5Utb7hpWn3sRNjVXsxLUyBrvWv/Ye04I+KCvEooNw0Uss1dvy5j4K355+oBfIvmFjpve3CjSATyQo10y/O/jNx0DTlg6SObU52H+W69EKpJIRB453EWDhpM0YVgB+dSqD8pZcGF0+fgGrPpXMYkojTvMhoUThwsxubP+sZk+3o5EQijUO4M1iRnsGjRA4nRyoSEbgVMDcTACCLAxsqLya8i9gCDvkHyaHuNpWp4GcsMfBegIT+E0St4zvgZ8Bq39afqbn+pgD1g0ndZzbspCOawXkxwEFWuWw0UmDGJRuDwtQhxuwkkBLgXV3NmKZCHPyOSNzQuN1lhzHwhibQ8GVzNIRVHxjBRTqdmY/5ldbxbju8r+aD1BsLd3BZr1jRRajLVnRdLMMw2+BHBhdzHejnyV7tLLrdyXOkkJJPDPK104HTbEU14c0R5vcNw97FWjwTF3fNf4xXpJj2fnBNmrkwnTKuPj0tQv7vXpEzop2Ep/xi7UlmsUKIVN64uBCBTs2TcPz/IR5opwd/qIHhXlL13xjSVxjfeu93ZCtemJlCYS1Vk2mMVWGNOmwDP5j/N0NgF7obfmL8foT8jm1lLTazu0hVZ6whz5nk00emh2F+3PthI6VPB2Me5RKh5fzZr+qFeWoudmnUtOW/W5P9blWlFjtKySbKotV/5Z8nROMlLDBPZ7+eWYcrMlYUsjXDxpHoyStRAjHXCRTTKmbikY1xYh4hHkAEBNNwA2X3+BSEwJAIEZVSP8bpOoefgCa/na2FvMvAZug2Il7NNrcAQ5AEMdKSY/gPA2dEpFLkOuDKpsk/1S0ipGCZ49NErlzNIHW/YtJbpMzN1Ts+WqltlT38ELPkfI4XrHefu21gbj6t7TdvJOymnae8YBkFj778cNSuzr5lj6Mkf21lPfLd+Xkcw4yjjQiXReZvaUwKki9xpvF5EU0P+AYf6Ajy3ZsDFiAIals+AEnOFY4XhGlHQiwHYtla4U17hk+JMkj9UMdYt0lHBlWUj7IQKaeiAjoUlPKbSQQ9GBy6p5Cp41tc/FitK++eLAim73BsopbJsDfpRrPT3HiNIzE6SEyUmIq2uon+cL9twZEjd65WbJGf2PdIlSWVm07LnfgMQlXjX4GqZKnaCPTEqjA7X85OdizYJZtu9yGNiQakCZy7FlANcEc5g5eqLHi2KSAvqJ2OonYcdLV6lKCX98OS+aB45U6vVaU3sp05tMSWQRm/nvY7G4Gp81ZrJZbDH+/Z82tH4M9tjm5usn+mZTAs7aTA1PxEzDeNJEJGj0krmT7FyBgcN/Y8JzSG9q4+NzyYUjhX8A3HZedI/FrRskoxvyOhgEcreqeoU6S0pvxqgApmCLabz4cXZBqpiy6bfSoH33fbvqIIa4M9aFCiVutmONky9zuKWwNrd5+oC2gGpQeY6ezLY/wZP1zPq7Qxvm9/8mZoRzWHrm2rKJ5ouhWcMxTCYfa6YXPlJ5ATCA8DZ58nyvhOV6Bk9+bpHdvgCRGdMNr/0xSTWEIIOUfZJn8Q3Y36PpvZBEKPfyFjo3uspLuHSVcciwE9hZ3h9MBJuh0hi8aj75RfB8rdLhMtPZ0fnTsMYfxe826vUtNMuEpa39ucqsC9U6AnK34UsCY5CDXR+1B+6eOkjwfTRNOlWM85KXLNj9gT08H5gqUH8PgTKYwZ3mgiTEzdKb+uE57npAkpY8RGelmJQAQUMwvOwSjkCZTy3gC+guYKj5tU7h5searMpdbto5+4W0bWGPPtbWJnI6jIkxmjw3AczFgA0/SivozLg7bhv+GiKp08ggkfde1MNZklVlJ6LuDTaAziZA3DT+9LLPWSVZAeA6Diiu1vDsw4Hc++o+nYVYilEAF9jYzMEfWL6Oow7UcNz/ga653Dv78ie2K21brJ8U6hXksE5xeAcWNH4QFb7P4nuSFwdDziJrSGksoKjlnktyJKVe2SFpuksualLcwkfBNBCoywc3C3kQifE5KI6Gzw29MLqlyT2+Dn8e6TfD0/Y46/aJ1OtvrDyH1Fn6zyy3VFzWx51P3UI8/fBQK2DBKYxh4/Y1V4P19BQHGdePOw/xaAysr61GNpEaGC7QXv3R12RJH335Al/nb+bc4bj77WW7CxCPHqUQ2f38OQYolluOSykKr/Yjwbxwb7ziYiQGgEQS6mSU70cZI1swzUTv0a3niRwnOZH4ZmfJDwt67cS2RuSiDAYooSFw+XIZd19TCWd1M0y32FzGt0mIkvWtEsxb862ZupahuKaWlUH71826ZG3tg/J7UCtA4q4hU3TZbObM61zWFPwCL/kNT/0tV/xcCA7J24j70vh7MohW470oIGxYJHH0KTsnLsTrZxBu1l+qVehyTwVyLdDI2wnxO8DjoTfaokGsyFoRRplDWIXy7APJo9W/0EJ8X3bJeLL43IirItD/uzzEr0tZPqBS0ZeBpazd+b+9RyMQx4qvEieQrQgJisG46SxiVTOHLpeADXZO4HrDwAbwGd69/x2DWyFi7Xp9yBL5jINzWo3RsS/I2/NzYOPEbOtlz84QrKxSo+aWTU2zEZRFHJjaB9S7ZiR9Kn782q7rNJdzQILnOntsq76mFgtfx90kCHPl402WV3lz+YL/3EIyH2Y6ILYdDegDopwtF6W1LnkrZ/EBpwifjb2hFZU6Lmi9b4tvM9B+U7gu/fgr7lnWK8yOMNPmsQGdQVnOP9whwoJ3ht0l/iznuNnnSHb53kG6OU9zaaTGAv9r2seyWVhvyDOJkSgOJ+SRtOm+ul5jxBvg1z/4PU0uAlC4qAU3KiJAwUYptpH31CPagZhwqxWwr4JPUeZ1qIynTGQuhDNs8NwsriIxhlhmiR+UOFWa9KOCOqkpInRvG2yKIf/3oQReRZabsBS82SqFQrT0v1tCoPxH3b2WFrMf8LlNb5uLbME1Q3aiyLdpBqlxvrVSXlNQLZM1a3H07SWLit5RgCJTiqfyqsI1m5marz7QQwsz1tg4p676sF0B4SLih+auSM/61JTDXPMKCtNj/Kmz/zJR/EAO/KWz64mA+yVbXQWHOGKyJJq8iP9C1MOf4hqPGxhzCbud593CwFaMT5/OGxD/VU65zw45LkwX4X63767EUs1Dn+baflIsdLjlyr2HdRTXAwGiGQZVvOJayCCqWXyYD6Brve/I9/dnzIkFk6cNC1nQclBVBVwIVPhVL0l5isf700ssdREPyOYAyGjknKpVQOTP7HFmGEmrGj2nKr4isrL78ZGZgLQE46F5OcgBKjiU7mNacxt+ENWuPhdET39n2UekORHhusjik5764glGEKG6RgFtF17KoJsZfgy75gXNhkKFi7hBIIzh5KleHpFcyU6nFrDLWTEjUG5kHGZd5iJwZrody2neJifPZId824RPVJl5McjHg1sbo4GgbB4B4QPGLulk/IhD1aj3DoIgmc9g+P5CkSzq7he14TNsNIJBV85rGCZWMbch9t24s1osIbWlDo9/SEzD7xj1+NisxQSBnnh2WVdJ+bi5N2xJeAA4RRV25PdNLEh2IVp7B38lbq7/tWBPirfV82HZkn3Y18TTFx8DdfgrO+jlV+smdcAzqRttZNq66U93jDDfXchwPt3ppt/KRYVXnFbWdC95hnuhCA/0dRuGlHehjOPvykQNZ2kzNszsXXwr5O0rw0StOSrECNEaOeQUpJwUfKW4AkBRGdmNQ/2fq/59pw0gLpkwmvhB2acD5RgsmHhQGC/idB8Lyt5/guwCMJzge7V/AP6MfYimXHBfDoJnp9kTpuaboKhG7qFondYwopYGRpOgwe5pZrpryyylHZG358kfKk5Q4Lj3h4yd4ddbG3bpeNphVqQPANDY82dBALMMcRueYCkpAGVuXeoqdmrHNU+bGWcehr5YKFzImbr91ipEQow0fSVImq6v61dgr1EouEBlfJWgqtmFJZLjevltmGMrk9SJH3eVXcam4KGdCvOOgyLwytKESIKIjA2pwM9TzJu0pxTMwKqy8bcTo5BEhuhofglt1nBQBV24ES95yIwyYVuS0JY+QytbwFLaiJ4k4pG5wemcq2YvV4IYL0jl+X25dTB93WQgn/4AtuvSjhe6wDM2sJptING0jd4YhfwHcbK6jxGsCVieDugPt8iOWriuFQq71X34zeAduKtsgL0PlUApj5nSoxt/K2QzsC8UmYxkvVy/qQttcBxmVviQQB5dK7GmvGLBHARh/S77E2gaNmPkzno+AyDmX1iZodWpytPuamY0Yym2Be+b6avp83rEBpyXYSSZtB5niOFTcgMo1MNk0uCJ0uKXnZ9lUs6PmvJcqFPoNXb/JdbUx/Amm7dF+TiO1En+CNk4+jFDOFreQh8CY4/WPjJKs5j0UkkiGYLV2tmXhX/H66OjjoAhRh83Yv4CsibuuzgnN6kdsn6WVKx/qezDIMrCcjyUZ6Y6n/RjOGHLV4KdZoqgIatBt/JD2I8QqXanVtRHA9UFpp/TKzc0NJur95IZvyrh1/xtmYjd8k1GQ9j809F8o5C1IS0hcTOgqhOTqj0buqJCPJUuG+IZmkQEktgw44x/1hsYpMxZr4d+CigMNppG2VnabQXTj4bNFNK/XMPKm8caRvyQvAYLZze+dKri08n3CbftL3NMQKv00yXPYbbDYStNrDtukwKfKQ1n+xEqybIsIDJBjOfzARq/B/pnx2TGDG9rVwoyv/C6Y1Y08gGnRI34ipKBuOq5/ztH+c0JHKZgY11/RrudJBN8yLqXcrRx9pZRSsabDDtpfyeR+5VEDim8dX0wPtc25czbhcfT1Jc3hT6XPm5CpFzRMVWZeJDtYYmX5QWVXUM6nuiGwbJ9k5rCnYlkMfWsMDvQdC+DLx5Op7CKj9cWO8WShffi+Y0ligjAe0/AIAYMv+bRUNvfOHxd12abU5pzQhVHVS9bwVUq9ChzXMYjpfl7IrquSF3jt2wRtFQOaHhi0Q3ax+rm6AH2TeDdlkBYymr8QOoUG/EP8Tp+3324ZqCj0PN1fRjorCJzylvVIEOxC/YhihubRg5+f17WOkZJpP+Py/tojQ29PwSX6IutKk1OUHJ9RF73Qbvi5Uveos0S65nQeZ1ZUZar/eN2B3hGWvGWAFD+i0gYd3ygT0zGzNA0B7zsjm/S2ERifG+u+eXmFVOx+k0i1wKsodlIK3BvLJOl0P5HiZKwsrEmeRy+FFsJ3Jc7MWgOKGheYS/dxCA1/dcYTE/0H4FFN4X/7Af+rm/+Lolh/APnxBWG0aBvjG14n9vYx7JYzyXWE59qOMXyO4xwOfBgspm04Acg6DzFrAY5FBBMbgGS3klVIgI7hXeTBLH4HfCnb5d3343pmsxakCWQvzhTLeX8b1cWnhsXImOwcWA3OTwl0Fj9EnXKwIybJ3f09VZjv/Ggq45UWTJApT9wypWXMvpPfY6MLbaoa033G/SbozI7AzPFWz6ZVbGgQxy7DygdDyurGNihz9fzxKrTVET5QG9qCFO4e9BVQq+a4Y9Kjj8W4nobFioa+zOnZMfiQODsJjKYHvQIr4/U68gnDcybfvxcX1BYUZMAt9wTmDvKIdV/1/Dwwr3oFIGqHFjomml/+5J5dWmPTKfGchaT2R6z6VA9Nsjj5l75YqVnWImVhcflZRqijdTIkkdA5OU1O9CjTPzE5UcNK0rDEkDFe8tJxsdAECjyKOgER4wD+UvkEEfIrOAZF4KWbKNgxHs/PY+htAIjxQ42EsIxT6AZh711gyZ189Ex+3OsHFfGTDwdS1dzUz5ROQrsTHN9s5Idk0A2ZDTKy1dkFmoT/gEXz954UgsZig0aAifBEveF63uASQG9hvK6E3lQY89no2XgpPwGj4dj9ixID7qBEGg0XwLNBaZNkjusjonLGYUNwq9pk7WIMRMQcP0/vDWc4H18Nwj94x+h4tetLz22NPMrZDcVbgWt2dAVL1r7i3z6J7YWUsSnVW2zAapgTvIgFdl/zVEukm3fdcdo1ydELgVQ2HtTYMC5YklXMnzuR1XxcC1PDK32/UrNzLC2FX24XspI8RTQzZ7HRpk1yYwC1z8DxeH2wz1RaKac0xAQNS7opiaB/2UvXhv8f7IWTasGQKpIU+ihNeSSeXIc4XBc2zZayG2SCmrZT8OVK/4nPwwIMg2HiRoaKW6icuk9fwugS27pgSjZ/AXUz5CeFURaOp2ZOF5MBnmwk/jpmX+HTeU7AnT9m8GMRwdJb4wGuUyMwoRAkyebPMpfTcJz9HMCxVb+lMZau7nBAm09ZF/6cz45DS6LtwHq6ZuoncaZxaWeoGPeJYrkeu03E7D0MsPmgYaBzYn5dKzBn8kNv33Zb4/WUJqETRvXc7yZPpySosofkaior9iarrS47ohZyFrPL6V/x8E1iBEEOC2+AoBflTUaLUk6HSnYMoc3h55Py0Jr1L6X2vcIj5vPpD85kWYh7HuVVpnUbeVf2zTEykGnJDLOnuuj6JwSrbllUzfinQHNyGktIAfmgqlCoteIgdbU9JTdhtbLPty2bBCeWnlMdhn1BSa3agbIZliXHSrf7X6rLBWoUTssjeDW+qGbRRB4Y9iq9StQKPMZPE7k+BqKG3UhYS7YmQsxY2P4CsgGS4dq6iAr5SPgfY4JYYxWc0lmh0jGAxmAusl05W8ZEXz3gnyKjHzQaHyi21cWgbAPgv3Q9/6WnQjrIq3RjikA6MksrWP8quHMbaxfcRF91FrfEdv+HgHP11Lp2bn+i7Xma7JWAeWvMK6u9YyhWIVmqDv+KIiv+iW9JpS2ztmFsMehXCbxgIVPqc3pLdSZVP6ax1L8Qw4D6EVAW5970seh+nkBoNnSuN5agF2/EjOQdY4bXdmrcVt03kuzvSDP5QW5mBElKI6GktmOdJhwD3SXn71vyDq0UbCZK7S8hMQd4Q0IgP2VKCJPyzgqHHcNVmuNlHhsvZlbKJkFTa7voGXKgY6oICpoEVXBjGULfUNgzIikN7RTFc8OTDmiYK0MKYswYqMXfJUOBBegjMLB2lF68jSXrKwwS6aXo2g2j8ETpfUwYM6XGjcjgQaw//gJk8wgXpskAfOFt+0htBTJusJIOg5BEllMwDD6NsoQiHX1pX3PxHF9zbp2UiSz6xjqrjd0DUv08D4HsFCMPOdvQIqpbyTu6iWcoxvtke38BmEjrACxp3Vxk22xkifJzrBPJex00s4x8bnWx/rQdLrv0SHreRerx0F2RW7tKLpvYEpGCZL6L7hSqxbubKqtY8w3VeLfR3ccNUOPQ+rfJbXyvwAr+9LED/jlyysaC+fct7z32bgNm8R/suxM4eJMoRA4/sRS/5/zGjugXhYxzuXivX9p+C/+xlMF9jwFaUPuBhYusR9OZtnIcMkjjVb0Ensebivu0yCnxpNjoSMdVNb29RCghufGel899EvWCXrlEa+5bWUwjNcFTf663upDELuIjsgy4oUV5kz2tIKaRcE1eCfjXi3hdv+e9eYSykPHhP+gAyVmA/gqmLhhJts8i9gilf+NTChlOChNvUNuUpxYi6bOnFzvmowJech28ayOmQvpnzCGdEdd2o6wldrQUB1nOR4Dm3AMtlLUsVKeaRjB5P0xlD701d2ccL7MdsypgFbRlPbjjsPIxnZSMylNQ2urybeF7DhYWv/I+SYQI/YjYHra8ZE1cxrSt/ZQ4RnJEU7KP0xvK0el3Isn4HKkcBQbcMGkiE5WYoQ57er3krXGt+AjiB0c7s/jfTPvdVqy95k1PW4dbAXeahy8CLomkhVRLPq552LcNKk3fTva3I5U9kbzgCLaagYq/px0M0wGYITrqiMgb2V+EPPOKojzj8PU0lHfAXjBScpvUxeZ830THeLp+GHHTKEOrVemAE7GZ4CGjssg/hwJQLhy/1gNVAZ3VxTRYx9cySHjkxEZ0s9hX4a40pJiepi/LF8SoJgDikGKiQqIJKUIDiGSYPIQ5MdtIlRMc5HFCFxfWG+ZjwCfZpj+KhfFzh47F28ObuUsU5VZymTyf3hxDUnt6GJ25WVDtrOVKv1HEHpN9wtc17zGKAnt7s7Oq3RRxX9CdaL6mt4Q5htZxjv687u5cky2a333sOl8DXDhydxA6xtfHuU05V24WThgOun2MqLy5toDJnXXy2Brit4tf1DktsHYvI5g3fDA3WSmtCKBHzJ/BN77qKWSLzZOl6WWsAtZoA7rdNcY05Gu9RGXx0RuGcp5lg77kUSrMsVk+6CTSN/0MccxIWW40sxp8fpKPxD3NPtVnmOXXSVX+58lcvA9qT5x6un344UmEtCO3zCve/eLG4j7O+YMWehB30Pim6voSEF0puCIK5GtSuiqNLhpaizCyATjymolt1rvatFWN0tUldUX3cJBNg5Gr8XibqD7vmmhi58RgTaMi5QNdtp3L0vdVc0Md3BPGDcnPK2ceHUsWFjJPMlutYFpdFe7V5J1PdauOb+l4y0LqMo4vS6OBxGg1id6lschcR5UvaBtdQj5Jx7Ebmn1q5PbQtXDrzJiAxb+wuPVuPUMegElX7M/o2I26p6BipcJLW8AYoe9UT/BeNQ8tebIwcHk69krDmPWCkmua+EpVylvt+zVV4ImTctnfl9uO86V+0DSZ+Rc/cM+GZMv0GENTrcrY/Bqgs5X6A6JN3QcjiDl+14GXwUffx+v5yqvHazmsYp++Mjc5xVARmo7yTh8SNCZvzAaRuSctEXg52ymhBUb6lu6CipCaghiD6f6m++HiX3tVQMBmMuysV9j+DxXIxTfuioBekA/w3Gx0trOmrM4NzvgEc+y9k/fIQMfTCS4tnvV7ywSsqUXpxUARrFr6zljd4xMHpBTE4VeRnrhQOwA/laKz2fYgvfigeYRi+jIacV+IWaYbNtL7RoBdTNxQLMf9ruSfOff8Yzs3BPPbmlETvUX0tiwh/kaXw1Rw+DywHWKPOBPr5aZOUPfWQPmZZD0wL1IyD/E4dgQUXZQIx0qo2OojHNLQDiyFfG4/5bHZ2cJ5Ij1khVI2zt5vWIJJO+yWwves009pdcppJeC0Tnf45KMPrAzmZwU6nJqwG4+DccQ/VC4KcLGiMSkG3w6cvI3qLdHfopKM50i47Vb/Ar7pxl1MeKy/777/beyN1T0+2wB9G22Tby76E7o5yHae5qUsx1+4xka4Ob0p8mDPdEbBK2IzzVN2T1dg1wMjUAY4bPMKTEw89ystjMuk7DocCvk9BsdfWAQwbrXPovR+Z96RL3xC4S1oQHHC5JgSRuYBcFxvu36mwGbndCTD8VNcVOAO1oSBm2a4pEtp/utD8QstI9ssrGGHJferAOcJVjat6XtEagAw+/COVX6v3xILm4TNT+rZCpw4a175rWL/TWsrijUKtsWsKdfRpLO5lQ7/JaaKVRHFLS11D+g8Ok1UYdJxxPv5sK6rfvPjvPeismQEoHPsRzfmZ4KeuKsN+eFV06kfXfuPv1PoVEl8U8abZYcGBne7q13Bo1dlWTAoc+4HK+Ky82JWrYwVfpJ5odIzzJMB5xORI5MGUkd03YGlvZduc2QzjK0ds2gwdDHFlFtNWU5NPGAJ/YwT8orXywuJJOltv9ySfdgKi7b5x/oW/uNq4rsxoefd/wiVDTQJbogfIMBgFzsJ22jnZv1avH4q5YBUDjckZeQbMfPbanrZaa9NE6+6Y91v6WT7IHX6wxhHND9HrrFP42RcscLJtXmmEIyof4n1cxDghLVn2SITH65qeUS9xO/5F6Cu5gGCJ9rqULweyQ47Xm01PCRARwcoiygSWcasHmEcoSAALaViSN1KX2OdLqB78sai5Hji7+cL6X2yeOH1WSCEXkl7URFsE6Ytqf7kCQNwHK8tdGiXH/vKk8oNtxvjtuukMuzNcrzQeAXWbc2dyvsQG/W4F9g7F69bTSxnrt2Ib7r1lVEY98hchj78gbSie9bzGWdfMjhCm6CoQOAto/aTiR2k12q00+Vzeq4tf+EJritDdyWLR+LSxvuaSnlMtiZMuzHUh+Yqgzpi949FofhSGcVSHOWErR+zpgjsnzfKn0d0ifzvJsO/Mv0ms95579EG0CQ42R99Egs/QL8jqp3Xp/pqojI02jN+6WowCDMIL3qx3gcGf163MdGq7qQJJBsS23adVpJeBcTr9n6MZX41O2A4X72v3F235qDavi0QW+yfEt4r3Dv0/LpefBIjx/irsJ9D48FuoEP91KLVWVzIEzsXAFWgHkNKWiPp+mb4kHZT+duY1fyyWF9IpglHtjh9ist3rP+MLf8jCfKJ8Jz6J15KdUBsOVcA+rMjHxDXuyt9XIJVpSjQSZEF//mMt25MdtsDU8wHgyvVPaixzwhfvOn7CyCL8dPUbmZ/fCg143LrKN/TyEgFfFIxPXLwZBWcdU423kA2mzJA+EQF6r0pc7pn7dqDIvxpKCjp+sWpa0y0R3UxmynZ25G9J1zPZ6iPZJUXpwb9FNPMButBKcY98WUtYctJ8S/MrxzQEbH0Ndh1l6xxN/f8MX+E/ZYAYo5/MmUfXSFO2ZOgKAj7MQit3nlM82iPlT1+W9CUPvb+E6+vSodsoaD7c6kToj+0NM0eRiQJ5qZnIXJtUiNWKzVkVirCCuLdbBxosaG6zyCAAcdEXUqkznHRaiMOVIK78XR6+oT/toecMFCDnpy2QGzoqhlfxntiEHd2zbuT0uRaFvPpdVMhvMTIhppyqg0311LsXUOwLnpGw319vcGFT9HnwFSU0PHbYopFZNp6UEbLzoP+iJ0jqlATs8lpDrUZzXXvwMfvBm5zjFGlXPhfCgp5oje9jNvYMlZzJsXnS3Yf2MUzadZJYF6PL+ZtwAlN1hxlZJdyTsQsHOu8DvppLgWN+xjrUnWzqvxL2RY0Ddc98p2ZrLpntLSrUOcT3pEKHXbdKubDT06kXL/enu4Nljjhw1t8eFmbmxH1qIe38rdG8WTaiMdZEDDcqCxeQmOZEi7TTanltoAIJnG9cZYlav8sMPPCXAvCQJoQY+C/k+HfZof+zdG/TZCxf08TWlQH6Dxoo1xQuabZMhXr3dwfu8jJSaWo9Vg7VixjroW59a7Pcbb3gPly3IqH9q1omUzrteSo3F7ge0nC0rx1QFVyE1Oog0x8H3+ukF3W6jdsdHntXI2nTJqkOUsUA6QCuJKtbzCgd48tcqxeAsIW8nQoe4T2OUEK+pX1S/7OW51ed76PvQk3WBOXDcF/pPL88m6204GM+cCFj62evrUF+brNpUf4wIL+84vCT+7y1tL9rQuJiHmiiQXi5cOauQYQX+lw4FB4aKCRZ4Wg4YiO57o9S/+dwf4ciV1BAT5y6FG8zeDtvirwvtGtJiP5wCOD9P0vlz+1kP6kDunJw7IHBspSOTog5A95023WW3j5MKU8Y216LeYmCmsS6RKWnOMbnz2Iodej+UIgrjjo4evs8N32Al3Qsd6zhOzn3suuyhY3csaxlBI1BJ1P+Uw0upqA132Vmir17gi75eVYrlf0nDm7NRV/Yh2fcDKNnOCuuzuuc2BYUCfBJHs+hta3Wz0sXAy7A0mpM6VOeWlayg/E+UF/FspseysiO00DfVTINUX3H5p5Ptz5/rOoX0bjTEfkOUEy0lPyLbQp5UVfbmqAzxXMY4VHv0p0X4Z9gR4iVjF85NRdnKN0ZD5/wZRaVVFcFO3I1VuowNbppanxYFm55WwklIElvuQm+TNo4WTyJ1IWKyqQKp1hIZ+58V8FFvMmnzq4E6tYGNrX7IHXvriXzNr8r0HsnROjdICWFJdNl1PtSjl6Wp0kp5f6L0GfW7Uq0wvYPhTb+XnX5sCHt4wfkN6WaAYj5xkoJn8Nq6C2kUlfOWKySn4Tnki9+Ejj7yMmAlJlceHmHAoOFtRlaIsJnT3DyD1+n/8hKYDx1YhEGl84tpmh8XXEPb4Go1+lmFNnvVohOU+1wsi5HTVRXwvWLik+bZbL4mLlVT32r/s5F69XbWzfUN1kugNt+n96fEQMBf/VqPx3lcqGP4+wC/Kf7Rf/dP5IfCZ+HZhnT7znH1Z064z1UmHBFkqwtrBj9flBuaUVuBNJNKe3szDHLFye2oXvcO+k0tWB+ktN/DLLlVsqLsS5zWMujabeUIZv9t2JDL2JhVoygTdM++unCGzIz4fFVbA5n76NkoT1VpUrA8uet5ywL9qH75r9pYR2+9moL/f93q0uZlREoxNhdjLgvMst+VtcxmLZLT5n41zBp25KeSiTliqthdHSndi1cY8VKr97TXws4d2hAkNG+SgtXK1WtL9cJGajqVODj1cTrEBBa+Crxj9K2TvB8qzLh/Y2iVqSUipWOG01jrqB503gL524299oSmYpdUCXbsJKvFxw3QhA9wpyFEbbC5APYFWuNH+px/J1NE2gXdvWDy8UJvgyeWNrxMlUqNDFD/ghRRZwfD6Z79rxnHbT/6HAGGct/dV8BvUSBtdwtlH4MYDCOUXcW86f/umugDFnYi8IjdkAVNM1vYWCJeHyBIEpIsR+jQr0w5AdWT/DuByJSJ0lqTqXkdUiAf4O6j8cHrtg3ZQT4Wx6Hm3Pa4+Wp/Mlw1P4ylgNKNfbawMlrJbs5Q8AWwoiWJnM30TlZQEaFmaiqSn0RYGfOeuYfRVeg0fxJDr0+ClC/CtORXYvtHTWZ7TJBMwtGxMjGi4OHYury1Gd1d3mMnPfv+1Yz2V8fokZMxetsPdSWQoKnIz71HJhThDS27nqqrC3d1yOFK91WkedRj5jt8HtFdJZThKOkaT7WygAt93CYj89grqxwa95j0tZZ1dQDbGRDVepJ3geSyCxyXPV+JYgbKZ8Kr19BbloXPzApjjNdKB5p2rdalGIsRyV7hMvoobZy5q13N9xvN8i953Hx7AW82n7RjkS1u91vknERUILqB6ZIuZtBbvW82cZ1uPzim006wIa5TPstfOKFo5VUuv50JwQPepNVqPSUjEd4G9Is3aI2weOuFWM/prTOaaepCHBVvAdmdzm+JbFuW9BsiXrLg+kzpzkn4URgqT/rJD8e8BfCDEm+McQ/7thxEQP/m+6QNjWG+w69dgia0oUpnwlAuxWw4fEDN/2m1+cPXFKnpiwSCzNfDANeeiHMfCpNOhPEO6N8SvrYbd1eTeVlWQ70EXd3bi9hEWmiwD5+hW9vuQK9dcJIeuObX8K9DJtuKZzGcP3YjdS7b0Vehr7ur2JRWEI9XUWrYHB07dNRaXJz3mlnRWi2pfOcwMDifMSW4YIkxqNScEAOrjkfVUahUyTI/uPoSfblrS9g/W6DSAvxi6plmViCrc8v78A3nQVwY89tJsbL35F3HxSJQnWERZqIOHF5COx1AX0Uiwt1VMVgcnEhPnsZj9MI6uBquv0048hqf1iAv78ayzHg+6qKJTwL7h5S2sxWPnu1pU7a0hArHM17uQYkjATsmimo0YLfLKGyZT89XUSJn0WlEIlJiMkRy1zw52BOr/612nlXN6Bt8yF4RpTxR4zDzOH/0xlMCxZaHiXNms/zGSsRI1jx5hpFDuvOU2MjrQ6WCjdTI9oZkKzobH556ZBtLHmtnNfs1iLMQFF7QOxLSG/AnNNBnWLr7g0ZDeL3Jph5pbHDoKQJ4OKN86g52qq95yp1Tqtp+8T+Uz3921Bww9vPoqnLWtCTKnn7fYU5Y1lJCvEZXZmscWBa89+aB/ngU1UZEtE+GYOtbT+Alb4CtAG07SNRsrph3nE6nPVp1Im9FWMH2rILxE0p/F5BTIGvU/EaCgrFwZtrS5fMYN7A9FxJ0F3PrxBjeJQHBptBCmHfy4NFKgtZVcyyu7RhSdJ2FDTarzn1GYkriny4mvvBrZtRlp6VqmeQblFvKwDa47pgfHKQfHGgXx/AQ/fv23Cmb/U5vMyafBejtkVmCy4edGyzM9Vfyi6FQpCKGuuN2uUu0znbGtTKcwjKb/3Xkz0BGv9HvkIVoGfIZN7q3mPkgKBOUVZsQzvXTCf9c3vJFYVMcvRvQSfSBX6aSGJ6h5be1+WZTWdKKpUsgWe7uljeNBSmmugvn0D+GKWecI9r25+fBdDkc5NBfi/b10Q+S+Zf5MfDjcKydbkX+mo8t/bqvQpQ1ZMBLNxZcAR//IpT64w0QYXipAzVne5GZriR6LL8lO1g8zOTjyOoP0wreDXeRUOcThFT6cQxw9nQTUMebbDUA8MqNHbJ5ZqqkAvypafm1M5qEop57jo+biSjuw+VWhp2U3F9aSJyOheHSf00WX7QW3L9zBgy6RP6El5lEPnWg37JqRAvaalizPsLCj8xmIXLMmGjPW32nLItm0bWCKLEqj3y8APTzj8DZq0xYC9jIznF+YBVIQvBYfgPfTijmq6h0RkeTTd3nJsk4Uu5JpcdJzcJ6wxZdT5iWE6M9GynoGbU3XCFvbSTiraKouRIwg91YZS+pzvDfJ3f0X2KQexPi+j0ai1fcnzancN8znqYf2tqwI9jQ4BlRc/QzJWStUv+t8JezPzJSC1UTVOH5JuBzfxyzgUx+eXkFJAWIhVbb4wJ7xVL9jbMrvr0ZLcvC6M8cN6axRptAC+fEjEjAyIFycQ2QuG7FazUM5U9kt/d2c8sTVvM+XdVsV3SZYS0p9s6TKwv8NbE+vn8axssurQM/OuZYd+VI8vVrcUKbjlk5w4bzchVnLxcHxMk98dUl/zTq06HcYc/sooBGexXe1MIUeD/RKlY10460/19nDH5gPVp0ltX3m3ld5EB7SNQC9Z1HDKtcvPHIZQm8QF6IOhNrLhpo/iAFGTIMqKSXE/AYG19wug1Jjq0JhWAcHnSmP+ooIABdDk8Lux8pI5gcxVzjvJ7KGllZLP+5hltS7wRuy6qQduXwOfwOsE7FUAlAC8TDdVyMRL6fEjmh7DuuA2Qy0wwq2XM/Eyx2qZlHHQoilL77DqUAKjHL+l8Y34MVneMgawv5gbpTmaGQMCUawWL1s3+WrFkJVZCunciqWbAeednpZWLh1hHuhEB09CD4KwHi1aFpbPnGO9YzCfNqr25TELPfG6KMt5hOPvCBIOanfx7fkvjMsbEv0UP4trKmkrAo/2MAL1g9/TL/KId721Od3w7nTMqUoTSVp0qUKi15E3ELPw6PRKGkzoAbjk0ZOGp6rEmAOP7bOC3W7TEs4WA86T3EU8DAJ8pSmls5hCOqzF1LmWMv02x6UCYZm8Vk5P9hktr1Pd/HnaefIdkXjzQRHKAPx6SKoTOA1G5pAjm1cViH2L6dRAmEb3vBh3i7kx2rCw/6zKQkj+k51oYh5IYyEaoI8wrdH7kPqlg79UzTSCzLZjnaOLofzGr49u6WW8KFKMwiGfsLmmvD9Kkgi3fGlCmVi8JqgkORDpQ5lFMJ/4x7zxtrlBRYfXCfsYllh3O/+5OeMqXl7mUQpqTnIg7sxTGoMb7xkIjhJXtWz2dmN+n8gUGlDWZZER6c8WyJUmmTHyQFZGJfDQXfq3vodKSD0yl7tmlU8qC2fgW9GWcD+vYq5ZUrd3qlYLA9ARhl4OGLXeR9zWYNVjKhFxfpTeCwB1M6PNUr+bmD8DOeS8qjJSQ0xgessfyec5Wwi3yxBeAC+3GSw95m8lDHT+lPcxqoNe6BNUscAANGHg6hJo+hWPY5yZbpVhcEDFatOTKVk7rVCg+dNCYs4eRo5x6310ibYmgtJLdpA205ok8du6LJQelz2K1XoCXXu2CsqrVBQ+tbHLSn1i8eKFEddywL78xIcny3hN78LSttLI9yK6P2YUP9XFZq55BbvlYyyYp/wFu5VnzxHcj30JjTja19+Pz81Pzg917Ksu4jCob1Nlun4KnvJSuh3udmkiMrIKIfQU86WPDN3v/WISfrVQnF6y5lXl84fprWHwezjbc/ueCXPrfYXJN373qizDNWjPfATD4OC84iAxmx8LZckPiYgcOu75XdOYu3xMejwTOawznhRSlDY73Q8lbeOU0x4xl32kYSRc72g6+DFlVz56B+r7KK88YaYH9KovgMri6daWadWEcb5f+Igj2kLGU26VABuPklZXEFQSF7fMfVePeCymQwOcX9DyqlAMjnMDhqPxgQ62xMwZfwEkO38BU3hhKZZHqiOL2kIKHxi8vAXqOw+82ulDECHmQxL7wWWZt1qtA0Gm3SqRQmKNlz3NQVRu6bxf13UCpssChh8nf5sJLnPlFFmBGxOC1tVHgnIDk8gtFmu/emkvqI6Gnp/YEYvTJIZPYeMteC+oo6T3jo6Y2UJnpBz/pM8zkXDbVanuDLroeY0+jWJeZ+/JbTYPok3tq9r/SgfReHrNe31wUzPz6+vo7mbyvvjU0RyEva/3JPtQqx28gFA6baqkDP2IfFrOulcgmNoe12wfmlB2tGxF9dv1zruwt3Sg2ESDND9yxtmXKYRJTfvuzNkssdXfnxk5yFxGaculQ8GEXAnBt8Tvxzg4C0zPo1HhWxo+8jVIyufdwSX6sqxVyPtf37cx/Fx9xXYiCkDjPRisH7z2EphuO61M66ZCXRjKjVsHb6k/jiAi4IIuxgaNR5+POZQkyhwXoPkBOHwhcQbpv4vZusv2KXl0RmSw7SyEN1MMe5rr4aBRbdYdeoWBKjPLwzgZTdMVtO3Ai5I3X/GHXXAdA8GaGYoZrVmU5MIEwKMQkocmzaN01+OYB+aadj1o+aQTYjZ78P0K2xuFizC25LJddYUkiT1NKbEYMoL4WJOW136fLXKGpgsPs5YjRjMrJ5vO75lYfXh/RlcVZKl+GqYoUAAjI+FjvRJUQkqgeBUBgw89wYO9JxVFoRm5CJUCfa7oqvXZcJ/Tz6nahPbh8lZ5sg7ALaPDzqGyvP3Hs5Ry/Nvu8F0u+9R5Si9RFKLA1I9fUO+9WwzjnZzs18V/ATb48Q3ruymxsRE6XXIr8m9cxWsFubxa7F895yrb0r6z0/MTy00jYlVzL7YcKhf7CwNeCcWbsfN8y2zgFms7Kb8dpXn+ElXnKS+XlYObkI21pbRq9Gl0+RCEwKw67XivvSe59mnv6w5uLa2U150vWKNATWoafiOxZTh9x2JvZGR03Sq1oW12ODkROcF5o0+Zasm4PZoJ7TwVLsYLhdKjzCgaGBRv8QxTvnZdOoS3Q5JE70d/rym5nz7SOOxb6IqAYIK1/yDuzk6aFcSe87MqpcokaWipEsY1ZyX2nU+Q+wmfar8aRl0+urK3PIIaC8rOpSEK99+FBr6C31M2yPOCH+g+pXCqJYqtPnvjc2au5feYgahWRnisQFMQs12MMs5dxB29Xoj2AJf7S8ZU18BF9Rzdk8PqxvJZSu3bt2WJw99a0HR/+GoS4ifjM7+SKxeAeBOeQzWg2DxpIO3AfdjY4Xs+9Zb3hCPrwuJtJcVirG2sC5StHpgkSSUoPZr1uPRtDcVjeuNdXJiRftCEvchd22pZwKqPF3jEeI0F9/7R+zAoD/AgPuMaMtFwONLvdQH80dp3Kpk2Fk2992CcVl3CF7SjQ9hA62lsmzwQd2pRdPW1BsguvTpeEOs9ydOSZ1uRtBR+GH41HFgn+ReQ7P1pE5oUdCVQPNOrL8t8z9PlUcvnR25wyR7f0Vod80FpsYiztbTNwzLpO27rHmt21iFb1yfi2z/XV2OX/VmHr4iQz5pyBVtfLyxe/SjwBFP8BYwgbGY8nJPMgYFl7BvI32mqanD+dpaywODg7X3xy3OE7nlNgwc1IDCnbv/YxEIV/fX/CM8IMPdUndgY65NJ9ph2oHTcVG0HdiruoWAu03IAJlHB9R6VzzKVYhgQRwQawlGx0xqto0nuEmkXlUAUAZPAxT4pYw+wSKxb0NZNKCVIIOCOlTYfO9jprY/My+gqzk1n6bOJwT/EFwwrQraGxhPcUHFLmm0VRI5QO5pwVajpcmlYdx+wGmlCKA5FOEntS1Q9GNCGnhfak35PSnZNDuNJBj2oA9qN9LuNSMUIDTguKQHNOpMYYpaTNJmkMdSGmFsVBJdxRkbpBgnHFFgLJNMLUgYEAggj2o3CmhCcmjFBcUm8UxC0hJpN9NLHtTsDZyfmFSpxgjuOtKcSMNvLegHWoz/nNIrEHIJBHcVncosQxGR1UD5icbT/ADro0OEVeWIGD/8ArrnInXcGYZI7c81vx3cDoNsqBsdM4xWkCZBcOUjPPXpis3JLBYzkt8oB6ZPWp7mYOzBWBCjANVPnH3MZ/wBWvHJJ6kUnqwSsi5ZxBhJLg7QPLXHQY6kVfQ5AI5AH41CNlvZbSQqqm0e5xUkADQqynrzkVaJZBfOpCKeVGXYdDgdqpaaoa535O4Dp9alvX3ySgMA3CDcOPeiyXbcRjOCylyoP4D8azlqXE0kjSNSEQLn0FYgwL0PjkSf1reI4rAc7bljzw+f1qY7lM3xkADvUVuxYSc/dcrWfLqkhjIEQUnuW6VSilmLlYmcse0fU1rzK5nystakg81iBkhsj8qqzEmCNjyRwTUzQOluRJGBkEgZz+dRbc2mNpGOxrPqWthr3U8zbS7HOBheM1dh0qVwC8qop7IMmoJBnT4JV6oxU/wAxW3nKqw+8QDx3q0r7kN9iKO0t4E+WIE+rckms6/QRzDAyAemetahbLAN8uOdo71naoq4GdpYgfLn0NEloEdyt9n/0mMFyobPOM4pl3by2k8blUxnKsvQke1SCQsitg5jIOT3omM9wu51coo44wBUdCnuRLcATNIflJyfl7E1YN1cXQEIJPsvU/X2qm8JaPzADtztz71YtHlt4m2kJuIJY9qaYyUwLbeV5yq5JJKCpJbl5dsIG0HhIk6n61WjbzpCqsFByWkfqakgcIdiDEhU7iOp/GgRKbZo3ia42+SWwUX+tapVQnyDgDjAwKxUuTMxjO0BjwD2x05rRtZi8Hln7yEA5PanHyEywUPfj6VVlUW8glBzuPOTTbjUlAKwYZu7HoP8AGqcUE95LvaTgfxt/QVTZKXcrXbI9yWii8sHtnr7+1XdOiV5ZJHGSuNo7Cnt5dsZEKLISMZ70glhtbomI/Kw+df8ACpW92U9rI0sdzQv3mP0qtBepPK6DAVecn0pP7QhV2Vsg55q7oizLdFUBqcfmsCPk7Y60JqaO+0rgZ60cyDlZeAqleaZHdyiQsUbGCQOtXgQehzS02riTsZK6HCOs0h+gAp50W3PV5T+I/wAK0sUYqeVD5mVrawhtGLRBskYOTmrNLRVLQTEopaKAEoopaAEopaSgAoyaKWgAB5pwIplFKw0yUMBTt4quzqqliQAOtU5NURRhBk571LRSbNTdUZuoRJsLgNVGbUf3QaM7Wzzn0rLeTe5bOcmok7FrUt3t3ItxIu87Q3aqBfCkk5z0pZXLsd3PqaZkNjPPtUXuOxoWt88VoI1GWB+XPp1NK2pSKD8o555qgrgMM4I9KR3Lkn2/KmpOwrGnb6iZbjYy4DEY9q0MVz9tkzR4yTuHSugzWkWyJWuL+FJmj60vHpVCOPyMUlIevtS5OAuePSsjUdG+1snNSebnqc/8BqMJhct36CniMqcDk4zQBZQgW5bGMnHFRb1B4DgjpzTnG21QZ560W8ZuJUjHQ9T3xQIc8xcAPJIQOgIp4Mm0qPOKjkjoPrS3dssMiQrncfX0qJbWTYXU/Lu2depp6hccDEWC7XYnoOtXbBh5vyggYPWswM2Sp5x3q7p1wzXIQgBVBwAKQzZHHNYU2PtD56bjmtvPFYk/+vk/3jSQM0bWOwZt0QUN0AY5P61mtBK146QNgqx5BwAM1FuweeBnOPWlWaW3ZijEcdR6Vd0TYt5u87blTgdHx1/GlkGUI9qrC6eZz5sjsfQnirIO9eDSY0QpIPsckZbncCB61ah1FI7dVMTM6jBO7ArLl+UnHY0+OTyzkqpPbIzinzWFa5c825u5f3YbnsgwB+NE9hLBGJGdAScHHJ/OtCzvkuv3fRgOcDAqveXyTM9tEpZ+mTwBTa0FrczlRdpLEsc+varcd7vgkjcbmICjHcdqpuAih3Y59BSEnYcfIPUdalOxTVyTKodnLv12joKjcmQ/O2cdB2FQnKtkfnTgxLD3pDEYlcc+9DO28MMgg9RQxVj9aUnzDuwB70CLcFzFDHjbvfP049KczS3Vy3loct1Uf1NUfMC8Jx71q6W/kW0kjgKm75j1Oapa6CehPb2CxHdOoduyj7o/xqy88MbbHYLxnGKgW+adXa2jzt5JY44rFmkaRzI5JJ96bkok2vuaVxJayxuUjO88g9OPWstnO7cTzTPMI6ZH40m8HqM+lQ3cpKxK5bG5CfcetMLkuVz0pRIEXjOabvH3u5pMYjFhk06OQo4boRyMimeZ83IyM9DU0kiSkHGAKFsBs6XOJYX+bLBskelWvtMO1m8xcA4PNc7FL5SMqEgN1prSfWrU9COU321C3VsbsjGcimnUoAMjca57f83GcU7eWXjtR7Rhyo6SC6inBKnp1zU9cvGWQZHBrU0+9J/cyc4+6aqM7icTUopcUVZIlFLRQAlFDAEZJwKWgBKKWoLqYwQlh16UXAbcXSW+M8nuPSqb6pmL5Fw3fNZskjMSSxJ96i34znPNYub6GiiiZpnLEljg+9NyBg9xzmoGPPtSk/KDipKHNKT3pUJ6ioSM9KkzgYHagB/mZ68mgDr3OOKi3c5oDmlYB5Oec80jMeOMU1jup5x5ae3WmgJ7ciOX95uBHIxxW5DNvyrlQ3bB7VhxvsYy7MKfXBNW7VGeRTNyDyeatOxLRsBSaUJT91JuFO7BJH//2VBLBwgNeAcW7kkAAD9LAABQSwMEFAAIAAgAc5goPgAAAAAAAAAAAAAAADAAAABlZjg4OGE1ODQ0YmQ3OGE5ZGU0YzJmMzMxNTRjYzNmY1xldWxlcmdlcmFkZS5naWbrDPBz5+WS4mJgYOD19HAJAtIKIMzBDCRdlnQdY2BgZgjwCXH9//8/UARIfsop/dLU9X3Bsh9rN/06fe7vq9d/3757Jaj4Skz1jbLRGzXTtyaO712D3nuGfgiK+xiX+Smj6FNB1deuSV/7pn2bvej7inW/Dh37ff7yn4eP/z59/ufO/f+/fv/7/v3du3d37949c+bM7t27V61aNXPmzI6OjvLy8rS0tNDQUBcXF2NjYyUlJUFBQYZRMAroDi50s+YCKcaSIL9gBodnN9KAbC5PF8eQiltXg2OzDxmI2Hre9tnWzrmLs+7sJb4v///PbLrblvxgck5G+Nq/J/JW6WZe7bPlZd6509PvnK25eSLfrNmd24/Vzv7v1PCfYcb3w24O13sORc2qkq5jd8hYMl0i71q0KcdrpoSEt58Du/5FOrw3tqx6mVbidvhx1LS6P4WnDmytDfocwNxza9GsvAurGY5cX1cmX3T5umlJ0a+c0ojs55sj2HW0l4fXa01LmhH07PNzS7Vj3JEWJROttzT8zRY8tDiPoUeTW+yi9hbh+ppwgwLxlf+MdMXtdpw9JWDkuqz9bIjpTs0moQV9p5e7Klos9665rsXAtvLLotuaTk+PZUxU9Ko3q1N3PWf6r/ty1I2zDfKHtnpm/hJLmAcKKk9XP5d1TglNAFBLBwixkWYg+gEAAFwEAABQSwMEFAAIAAgAc5goPgAAAAAAAAAAAAAAAC4AAABjYzk3NzUxNjI2YWUxOWJhZWRkZjZhODdlYmY0MTAwZlxmZXVlcmJhY2guZ2lm6wzwc+flkuJiYGDg9fRwCQLSCiDMwQwkXZZ0HWNgYGYI8Alx/f//P1AESDIyMkiICv388Z2VieHLx/f87Eya4rxmCiLG8iKZAU79lTmv7l1nZmTgZWXkYmFkZ2YU4mAW52aV5mVTEODQlxY0lhM2VxSzVJawUpF00ZF31pYPMNdKcDFLdDWPczGPdjKNd7VI8bTO8HNI87HPDHDOC3FvSAmb21x2fPPKbUtmn9m5/trRPQc2rLh5/tTLxw8kuFm1xPmM5UTMFcX9jNX8TDR8jNVjnUwLgt1Kwr2KInw6smM7cuKrEkObs+K6izNWT2qb11G3Zc7Ew2sXf331VJSTJcbO6Om1C1dOHNYX431y56Y4B/P8ylxhAf6vzx5+fXyPlZFBV4hbRUFeV1Pj6/1bU5MiHx3YJc7CqMDOfHPu1G9Xzn+7fd2Kl0NdXu7b2ROt5vo6igpK/HzvZkw2VlL8sWLJ913bVJmZSoQFCkQEDDk5tHl59jlaX4oMAQblbwaG2wwMpxkY+hkYKhgYYhgYfBgYTBgYDBgYNBgYFBkYJBgYRBgYBBgYWBkYWECxwMDEwJDCyPifhUUTSLKzKzEyyjEyFnNz/hMT+yclqc7G9ldDQw1I6mibcHKqsrP/NTf7Y235x83FmI/vs5vLH08PAz4+EwGB3xFhv2Oi7ifF/8rL+VWU/6ui7H99PTMT0//Tp01MTIyMjAwMDPT09NTV1eXl5RlGARhkNe1zBFKMJUF+wQwOz26kAeOD1dPFMaTiVvKXpAP8ERJlD6Z+Tzikt+/J/ySJy92c0gkpKS0GezbMTjh/5ABPObPYgqKT/45PVhcwMxPecc9rY0Ft6rGlDZFzvL0mNXYGyrYzhf2tt1dp3LKJocz8hWax+r/UU73V5+rEZnNy//+tyXV31+zo/SfCu2Llkxa/klVhfS3JN7OLo1vra8j+gP+nfzE8UVQT+cvDs3bX9rLcnbK6pz9cmSZ6uOUrD48sf18d66Z9ceWVP/+e7/2/Qm3FVUOT+7v5n64JSIp92P/KI/Sqf+Wk7w/vrI7lyZ6496TWugU//J8wHNoTzqNxL+Xq758xzY2fVZ0ObrdrYwvbwflLp7/337/EBGfOT3uer7q+QK3CYN+Pb9MfXlsy/wTXPwOD2uaohx8fTV7Gynw4pM2ocInG33MH/kiuSTj4f/H7KQ5OnTyifBysi0zn3LevamRaNfvh8lv/w2t4eOZvuv8n/RdD8Ia2hyv+VN9r1zqzyjf7r9z+mu9v/n2X//807rShQ6jLCxm/qs+ff4ovaNI7Fv1+/5+Q/wf+PmlseCC+8qabw/Kuyrh/okX/2e/zsqVGxOz58/fj+3y2us6otuxf0ZtZ5A084mvPHjihe6JfZna9vv6U9+krYuLjPzX/vT6x2EHw23uenrgMy+x/++fPvBzxbY7gjvNn9ObPetG5kEFwUhSTvb9RhdHDM1Pr9eXttgpU73NoYHFLSKl8cP4fw6Hb6z1lWnnrQKnE09XPZZ1TQhMAUEsHCPntn/pxBAAAVwUAAFBLAwQUAAgACABzmCg+AAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbO1dXXObyhm+7vkVDFfnTCu837vMROeMkomPM62TTJ306sx4EEISjYRUgVM7nf737rKLDJKQAIEseZoLaw2rNTzPu+/H7gN589vjfGZ9D1ZxuIj6NnSAbQWRvxiF0aRvPyTjnrB/+/WnN5NgMQmGK88aL1ZzL+nb2EG2PD73/NXC8uejj9486NvvH2bBahKsvFFgW8liMSs5fBPMln3793BoYevzQ/QtCSwvsq3QX0TX4Ux+IxgLITwqCBmOuPDcUUB8NMYYUuL7eOz/ETwP6UzCsW3F08W/P0Rf5OBvvVXfTlYPwfoCP0TLh8TyQN8e2JYH+/Zb+YH69jv7Kuvy6SHJ+vwjDGaB/w3qrum16+7Te082sGoMZYOohi8btG/P01NMNdQprhrqlOjbN/LD7du3aQ8IVEt1gVC1VB8oh75Tn3Lkr+pTDpz2leOmPeWwaT85aqxHEaqVnnNVy0/vQ4IXy9v2E0mllYSJwlF2eUimi5VqjbxEHZE95f3NgyixkqelPLJchFFiWzNvGMwUQr/+9Kc3Ck1rMfxn4CcGy+x8+suV6iNPv1vMFitLji7NZpL+HKY/vdly6smWNKe068x7ClbWd2+mzpojcrTbxSgoHPWiUFqXuv44CZZqAMlCvAyCkbFNfcWysZRDpjY69maxuSB/sViNYutRfc9ltvXUt5Hj2tYP/eW0T3qzd+EP83dxityVAeQANG9fAzRE9U2RIaI9aN69BmhSY3lSENVExl/M5140sqLU231ezJ4miyhFJNzneSQY217n3vgdP23Irl7akL5hKBvpHzZ/bgcl+g9noOeGTMELo+AueZoFVjIN/W9REMfynp/RudpPYQ6y1jksN7M4mKjf1lfht3Mzndpj3g8R6Bb+4dTCsANIamI910HQRWa0KvcU/CvSfWL1s2+H8+Us9MNkbVAzZeEfokTG9CCNBbG+uBx/34Jg+UUO+in6svKiWMV03SeDpTof3kXx0UMORikDPaichJrkyAFAXC4Bw4siABoXK+F39QzAjgAI5P7Rc+aiTU9v/Lzx8sbHN/PwHfp3SHFqBBRuWQHsyMV3Z897bub/Pr7cx18WIa/RyV8WA6/Ly9+GI13sFN28t+XYVYl/wH3naybV/XRB+dN4HAeJnh8kZacimdgh1Dg0hgt+jh9TJZWgOtyB6sGgWER1+CKoaqcPq8+QLEoIUgCVdQCqvwNUvx6o/ksW+PkSXa1apMsXrObKThGpT6tkupCplDf7m3RBG3iZtbpdc3x+aI4rj7ZGZX7fYezU4Kb+uz3HDbXj1iH0h1oLYcTlOftsyW83Zmaomdn2E/NDfmKDmQ5jaifMuNprQ7Oi2YPS8qkLz4gaP6totqk54G02qOmwAuiAmp7O9J9KSgHJFXMIcMlz8gM7Z2qdDG2QNM88m5ktBZq+1gkJX48ICO3ODOYIhDha5yZcBwjpywTleE2IMFRQN6sE6kWMO5OTl4SKwRac8aFQsZnlx11GC0Spxh6g5pkj0eEBu9WoAQ4vZowiiy7EzdiAgLU/MU5QFew2h7faGG53zK74UHzaNocOQ1Qb5oB0lY1RRT8JHcw2CwhtDoDna0OgvSYEDoOY5q3nwq1jHSK3FwXjQyFy2zo6jJJtWIfJJDGsaB3IgXBvFCUOBBhcpLMoC8dxls6aWFEwibs64fiuUThuzvO+gIwclwIXrUnUtMo4zTmmYj2hqWHVJRhsZbEtVnPvytLSaa20dNp9WqoL5ZSM06SlvHj4ZQuIQVnNPa1Vc0+7r7lb5Wm75qYO421tFzTk4m1ZlT2tVWVPu6+yW+Ziq8qWueoJyCgLENOsvJjuyChv6gSIm6MX8NrCWDiQCrMGjYjDERLH1mY7LPirxu1mCzUt6Ktuw7p/Kf+4pVSrTZUDcChmjLsMEgA4ASSLAwgghjFmnCPCAWd6c0aWaVAQVwDEKcWU7suzN2+3qrlf5dWJ6vdUdbmtIL0OHoLV0POnef3o+mDvr6sgjCtqSH3f5ZxChpgXQHfoBaPRmHmCB8MxgQCM/xhnw7atII2WJs//qHupbXsj4rrNpKO3mXT0NpOO3mjh6PtU7yVUA2np6Pt7bKSj11odBlULGenotT6LjUi0IB69OiNZaGro9ZccoHEUe4vMthSAqgjJAgA6J+FoM/CyxPsU0KFMciuzzRahO15Y2tTu9KZnj58CPGltzEhPOTm99jTzT8fKkfQ4LSR8r0uL1KVydmO5VS+wUiN76RGH0EvWvbRSyZ0Kfon2s+7IaCOwQwG8YOlXK+XbqQiQYBOz6OiQwoKyUeJB6DBKc/sNZ83Meetlsrqltm4sL0QyD+lULmvIBq3rh3y6kCK9mGqmDWi1ugjhqpGDgI2lQJ3Kia3DrcP8Yjq6xjDv1SeZTQzk0KMeImq2Ojepsa4xaejatTs7vW/f9uhPmcs3chjaXq7T+lZDnUXTiyKmR51s245ri0cOR+J8JGOl2wphDU7Ci+IkTT+f1hmp5EQojUznPJStYoeagskWBSdYwVbevXXJkXAYcynPMkk9AYjrMAyhFvAiOR3yyhaAWwyZN2UqArVSWANR1b358gpSPnhoPutnKDp369GqJg0EEIgiJgCWn5n3Z4Jw5AJGAHYJ7CA9uSmTd70//DhuEWv4clhD88x3VS2GUt64kBMln2OQU2Ph0q+4ebxBF2L1m2yxahtwVA9wdGLAD+j9c+ZLjBIOyqymAOhRdcy7cOXPSmW5ep8B7RanqR2Lvdj6iyj018ip7qWxpPqOWEk8TDF/Xr8tMABpPQqqbWKFkyD6Lq9vsYot6xGYxdsnoDm3fmRHHmE6OdQ5aA79gDm+5l6yCh+tQdZ/kPUaIOWt1NYbgARK0mWGpDLXATZ/YkDSkTmhBCKGCZDzDxF5oQOqtyWEizAjFCN5hsPdUTpeBn44Dv1mUXpSVlVc15t4161MvGYLCrzCon1BkegKAQHeqHsFcCgUgmdPrOkcChEHuJAdGdJLd/rLSofrejH9upWY3gh9aBYdREWfyB0sBH1G3+z0SfBl6pTlUUyGIpEjqJE+4EBiul0bXNcL7tetBPcjVJYVsygifRDiXJBC4sqki2IyPGnAVR2NcsU2ahSKAoX4BtomyBSA/lgH5o+NQG5r12hjq2XLU6erPpt+ulY4ryqS+H0RjYJZXiGRP6KFEXklRFVtw20u190SNQyyN9MMUukBUg2stwkH90SLGjwtadCvrGGqgbSowUu7CtUgWtTg3VMjavDumRE1rF9ncNWabuH2pPvH3QkTMDDvbdKNtpNEzSxa319uhv49DOIgWnmjOgni85earZuc7tnSasshJ0kQlVorbeeTQs13mgXi9c01S/w+76i2CuwWeB/U8czN5EHFRP8M3gDWI8SBBEFMGcIcAyNpgdQRlAtGMGeIuYDWrHuDx+VK2pW6vgwv5SHl4b798+PPg1+snoUd8BfrSbepA36xizhfHSLgYAZSUmwxTQHTKQg7otpNVp4fFLczi9jyndiCWtjCKtiiArZ/Ph7bQwXNy2MLT4Ut3oMtboLtoXLlXLFF7WNL9viERtiSs8d2t084EttKmrj96exmNNx8PaN372avZ/wPBP/VX/TuucmD78Wh6PkCr2osC7ewHqt1Xg7ovsDtHKWg00k2Mzl2j1FpnxwKhihnkOCzfm3RITJSQ70oPtSjwWZz2RAikIMEQVyW3Jww2Nbe8ovwwS+LjGxy9LLZwXlhcpCzfiD3EBnissjYnBguKc4Lds5cdBifs+i8fnkyykIzzkIzaRaaX5WuvdPX9nbzls3XHJnRZZHxusMyviwyXndYJpdFxisKy7tfYTPIgvJ2CFY7Onsj6za7tJxdcoaPl4Ds6RKzAyPkaBVfSLN5O+dNLt5BLqtLLrtEcjNuBXEERQJiThAWlF86tfmt3SKxNWm9JFLhxm6OeQ9Cb/O4eVRDEOHkOT/r+VyqFbjK/q+uX/8HUEsHCPNbpkicCwAA3WsAAFBLAwQUAAgACABzmCg+AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dW4/bxpJ+3vMrCC0QjONIZjevOvHkQLbHl9iOJx4nWQQBBhTZkuihSJmkbI0X+xrs/pDFvpyHs+eS85593/yH80u2L2xKvIgiNdQMe9ZjwKR47aqvqrqqurp5/w+ruSe9R2HkBv5xDwzknoR8O3Bcf3rcW8aTvtn7w1e/uz9FwRSNQ0uaBOHcio97ygD2yPGl+9Xv/ul+NAs+SJZHL/neRR+OexPLi1BPihYhspxohlCcOW4tV67nWuHlq/FbZMfR+gR7yDN/scRvicMlPmbPnRduxH/eIy+cBH4sSZH7EeFGQ3Ls/j3alvtoaXuu41o+eR9tG75Ikj64TjzD18oypnCG3OkMP0+VFfY4OwhC5+wyitFcWv2IwuC4B4fKwJBNhf9BvSddslOKqgwUQ8PU2ZaHG6AN4MaF+A9fufUUfR96f4biGPM4kqwVijih09B1Uk6QH8+iB4G3PrQIXD9+aC3iZUjxkZNDZ/EleRn+GRLCRv7UQ8kxgNk3Q/bFOFidMW4p7NFvLhf0Ftqe8fRh4AWhFGK6NUzYNNmO2ZZeQxqaXiXTa2R6RfIM8tD0PBhCegXdjtmWXuW5PmtaQjjgVAOZv8aNJHIAP5yIFeeNZ42Rd9zrSUvfjV/wH7FrX6wpJdd/s5yPsThvCkv6SNDSI+/fy0nZ/QsU+shjouRjYJfBMpLeWx6HjrbDQbY7xz/ZiYQhFgHrO9wAdtRB0xDxdjNdYOyiZ+VNcc0dvn+PN4K0IcJttWOs1JiemNBCdC6eBSHZc6yYHCHa4qE5wqoUU2mgbUn58tvPPfIy/IZl8h59AE0FmJoiG8AYaqbOmhNhVqBQmrvYgsjEgsytVdnFkjWOAm8ZozMb0+i/CGwrpmaHwbFWUfIM/ARFITuXWE9NsjNxV2itC5gU9yPmNWnXGmpqiAJqU3Ior6/Bp3NyDGQuydj+LGYWIQMk8mpdYtI2mU+f92oyiVBMGtmHtInQ3Dj7MnASjoG81MczLF4+iiIiAAnbueSHNlFRdqPCD/pYZCiO2DgtKH+BoWoKHEINDIcq3iGGaIEIa6j55s+UFrjt1EykIojlluFdQJ6akZRXL3vVvNyQ6SIz5dRsrJkpVzJzza6tRIPaNCbaEVFsFDmRILbzkd1Or2KGc83vPH/sYD63fEfyrTl+1UM3tLFqkBtd0jVJlkzYJFkAk5rSFyxjfu61iyLkh5bDnps8rcB3rKmunfJ1fdNWoTFyQnMlkOT9IarVONzNIv89bloQRpK0khP0LuXETnzkR1aYjX2GFUgOfQQbYGFpCN2VNOLXj/hVI4h3VGYxRkry2JHKAR9pXAhYe975rM0Rs+9YpGx3ggHI68YKuy0RcYk4M0fYLVphSTwiYEufS3YQHf32s9SXhvj3r3+6g/fIa76QkvOR62fP36Xn7/Sy+nZvhyKOdihiuVGDstoOyDlNyvypVK9AY70q4e054NxdHY0oKwknL9m+tgfX8AP30g2d8Y1sxmzTBud4L6btYBWowyqYYdXdq7MKdohV0CgVslYYp1QwTtmHcUr3GWe0wTi1Qjn3YpzaIcalytmYVVn/4DTwLqeBn3MQqGUjLgLVWwsmcmgpjA15nwHHEh4O1ZJ7LHozJDuQ3WPRm1Wyo1a7FYukOZyl6ZNrO6ON4dnW6YASdMB2dLa7qBGakl9pO6zzmyDnCsImp/3AMPNHRPkjUeJh9oTRIHbIezbufOG5thunMuYRN/mZH+M4FtG4sBieXiC0IFmBV/6b0PIjkulh12yEvbWxgWJh04cJONyf6Wtq+jQhAVDEAoArR3+LdqjgFimHKhY2ed3Q9W6rRrZrPkvYn+uaecdc7Iatc626dy0Cqm0HVO1IwL6Gk7s82OaVqhoADTqiPHndBlspAVtvCrYuItgK191cHK+Ijm2ShBsVkQUNga1wJ7uHK0w7TGWgadAAim6YpixrMjjpAy3BOgt2VTK6Y1i/DmIrzudbEzVWtYH8+a9/YsHRywLuD3aFRpvR6IMOxaJAG5iaYeqqYuhQH8qawlJsucOqURmowmrG0rHBcr6+ZBx9UODo//53NUuzw0b4anL/xrCRPDBMTRmaQFeUoaGqplKiRcmwTh01aj5c0+aAjOcFH16jiYdWlJdXkugHtST6YROJftglieZGKh/aDpW2ZfhBRoYfFmX4z41k+M87ZRh8kmEunXVk+FETGX7UJRnOm1+WWlXVAVAhUDQdKoYiD1W1bYl+mJHoR0WJ/ksjif7LJ6tcV6If1ZLokyYSfdIhiS4YY5aV3DWSt4cIP8qI8ElRhP/aSIT/+sko1xXhk1oi/LiJCD/ukAiXWd8So6y3LdAnGYF+XBTovzUS6L/tFGjtk0BzUa0j0E+aCPSTDgm0tlmolI3ZWxbhxxkRflIU4V8aifAvn2xyXRF+UkuEnzYR4acdEuES41uSvdDMtgX6SUagnxYF+u+NBPrvOwVa/X8o0E8C30Feeeq1mDB6xk58zSB5zqoXXrDahTGpatCOezbZ6sc9h2yN4x6p/Tcx6/BmeNybkifgJ83IFqQFDLCJcjzrkHIAszy3J+eCS61hvU4F+V93iXx47eQ/F4B8eDjyX3SJ/C3C3yr5+eGcsVDDOSDXeZLq+cvi4ST3DwfQwL91Q1NVBSpQ1k/6oNMjedVY2Yes5AJE3DBaGmi/WkXn1UK6hoEygKlDzdCBWoXFjZdHVGPhiIZFsXQLagMDaAY0DQ1qigmgLi4cSDA00mFprhqGkdEMKHDh1kQwLPKKoRhZvRAXialIfXtab8VrcIb1O4uOd9wzEXHgMGD3E/tWBvaqFFnF/2QDe1GqOGBsKfK/icrrKxT5188zFAf1v2EnXrE8wynLM3zL8gwuSzO8ZVmGC5Zk8FiSYc6SDH6SZFhkkwxKkyTDN12Ks7iEQ7VRuUWjwPJVhwg2roHe0y7Sqx+O3m87RO9aoFslON+LuSL1YtidljXsRivYd5CBLENW7nnJS0Lp3JVhdoifr00gQKeWx+atYD53ITMA1Fy5RZWH0XG3+0IwMIqpASD0rC5PMP4XkgFAB7dGGeaCgZHXBdjxWVzV3PdF6rMLGYDCFCuBws48EgsRkeBA9HW5Ugs6xvstIf9NzPW9lpC/WPX8mp04YyH/Gxbyf8dC/ncs5A9ZyB+xkD9mIf+YrqaAg36brcmAH+WwvXXgv3NRhc046XWX4qTcAKvK1iRTho1q1BuFiWddIj8/kKwenPw33SdfBYcj/7sukV8u/O2Sn+/03onU6fULZQRqaXWBxuql+6ZqDjRoAsVQoYJ52+l5o9U4hYI56dvWiDGTkW1FxcK+hkbgge1IMGR2lhnIlWm2jqMRC4bG1uVimKJAVb8tejI+6DJXn8oOGtWpVWHRvX5/60IvJmS+kJHLQojbzztiIpOmIcxsv97pFXdqpSRuYomra0lJFGexfs9O/MBSEj+ylMQDmlxQj3voPJnwMDlPZjxMz5MpDzO6Y2LIeHLibZqcuMgnJ3asSZWNz77vUHym5KyPySYGqc1Xda0g+IcOEVwYrD4AvT92n97mi89WrdPTrSWdt4j0FUku1P6K1an10zWpMP26ZgIVyIquykCTFVpZlyTcszNcBa5+nAjnmu9cglavXzjScV99Khw4t20N2plwCOxahBY76LdFPVzhwBFtFdoddW1i9e271oyFSrbjMASKYAtVbmJCc7tKGipWVBY7f1BcNOgh/0rEI/7FhxO6o+CLeRbB41mEOc8i+DyLsOBZhHc8ixCmWYQon0XYsdhxbinJTgVdqlE6iJkf5a9e86lR0PmoW/SXDGgflv4TEejPH26R/sfdor9c/lulv1BwLFZXWCh0IKsNXW4pgCBdpTrQVEM1FE02TV3VVSD2Ogpz4Zz6wnSJfIWDwNPFfeHQKGYgTDiApgoNALGe6KBqhLDjaCyEQ6MweyJf1SCwbrwTDo28agzV26IZoVidfGEyBdSzXYYmbgceiQlFmnoQfWGqLcmIii/+iJ2MKC7/+oQnI57yZMQznoz4micjYp6MGNMvU+qkMAqyZIRDd0wydglZMmJCd0gyYsr21skIo0ky4kmngjEtnZmuNVmvt1H4+bRTFKvG4Sl+1lGKjYNR/HWnKF5LdZsUF2qNxerk+tuqGS7TkgfMm/ySCwKPf4wP+vHW61l0QaseA+m4R24Lh0AxczAUunbBEQ6BkrUWoMgIIOEQyKsAkIWuUJhUAdC9brqYFlCFGgcv1q8Jyf7N78yKw/wtcb9xW+P+4lcynvO4/wWP+1/yuP8bHvfPaACvkeKxJO5/y+P+Cx73ezzun6dxv5+P+80mcf/zTkVI+UFYvfQ7BlqLg9AvukV/cbT5wPS/FIH+/PcdWqT/m27RXy7/rdJfrCMWqifcsthCaW0CZtItWmzBFc5l3/kdh6qxpI7772+FQ+M2lx9cCIfGri85qAJP5PeEQ2NX+YHAK1zMxerfi4s5mtkZjQL34L6YUHAkbt0qCqZYCQi0WoS4cZg5aQn1MoqwFcQnjntHq6OXd6S+hKNF+QsJ/3enl4147u2qx6YPu7LoUcLbiIXknE3eFu9om0cpjvSwXo99MMO+u1djH+wO+2Db7Mumv84S05bNfyXyyD4Ym8+BncWWP0WgOjuVN5n8pq2KqrdpNttivpJO1V8vjQ7l6pxtnpBrN5l1AYbVAO/4iGw5wBX9YrcB7q8R1rsOcJX1+g6/xi9aL/aqtLQkeWgFf8mXNfflr+W7c4vQiTmCFsf0w81StEDIYdYrZZ+0wI/EvMmwolL9thk/pVoJHrqh7aFRaJfn+RnTaDp/VNCGcTDFJyt1wQ58115Y4UZxCL1pP6+kKVZX8BHrxUEupuU9bloQRpK0khMQL2XeJ/EjK8zKPoMMJIc+gg3MsFCE7koa8etH/KoRJPlAqnbSSEkeO1LJ97jpnsZl4Yb0reBwjM7/NUT2LI7+jXsdFPAvpMuj0Z2mDsfGw2rbRSxxjstUDF/+Krn6OVEd17ewNEeXWPfm9d3ZXaLzajKJUEyjCfZZ4v6wSrDi0LJzX00vS5o01+siFqdL/yIeJTh89m4ZxF+O2KZX5HyMVmvGJ3d2l+kFtk7cFXLybI1ibHlOCd8YDzbkqQw/mKzdsdtiLucTFCLfRjmr+dpFEfJDyynYyvQMvhW7A9VW01/OUejaKafzN5NnY1KXfDgEagNdVwyZJpyHwID1zeKOoZR8S6zCu1OktgvKppyXycmT0FrMGja5RnSZHI0818EXzl0/0a65teL20xpHgbeM0ZkdIuS/CGzaOfPmf3CdeEZIpNeSm9gabJf8dip0/OpZELofAz/OimCtfiTvFlDTX9MtqI/dOI+dPFD0A2FHMpfTJJHZCL61NvYBM4TNsQV7QKtq5rVAix9e3+Wrj61dxPZQarndZF9BMdnIDUUP7oGeZsBW0FNuBj3n+tDbHiq2Yla1fcyqbqrdNqsFz2oaLn1nQpwkl+RcqXOROXa0uiMdS5b0uRS5/tEYb1fSXckm6TenzO/F99nsWaVv2E0y3B0v7Rhs4raabivcsIpUbr1GbnetHnMuZL2qHLdJXMrEDJb6VRm/a7SMInvmu3Fc7XIVANi4sba5uIKv3NjYtgFMtv3VIv8Gxwc8ET/GYswCiSScKJHoTDzBbj4MiypcjYY8Ko0h3OiF9Qb9S/7wBJskKcJWfJKqWYRjMzoulETfSiEIodU9QB8YQ7i5fiktICGFCpsB3240eF4fW9sjalkaQ9IgmX8zUns9iEBjoGwioqWIZOvQdkOiJJA4+6ChtIKG9I9//y/JkT6bxl9KKb/3TRZ3ABwFg6Poa3AMDo5sNtCXx0nvEU095NqzJe4pNtMiE9Zfsx8YOyvF7yfbCeKfSCf+05fZf7hHzx9i/+7UxLykTYdRx/op0ZvHe2gOhorOMVYNsDElUm2mjGoG4rv1Ml/sxtYU0Zb+8R//uVsP20alBvvBFluoDaCanbhLlns2ByZsyH5tX/Zr128Hu8N/snqVuhfPX7r+MsrwvF+P5+zGFkX+M08snm+R+eEAylu7mH0Dl2Q0tSR0wV3OetJxaQSzo7CgIoSps1ZSaQR57e7gFQbldkWX5eP9I4ZLfmhgA4DFecMB/0Wt4lCgXZnfNQZYgAxZeES242TbXm2vkq1clOVkXUQl95EGuVZ5KWfJDdcNjIPAQ9Zaj5hY51J0G6/aP0lXA8D9TObGoKTKzJlajewM2RfjYJXJvbEz1oI2m15N7vM8F2G7NpXmbiwhjGconZEeJLVzjXhb5MAh+PzrH1t1jYvchW1w98yNlyxf6c6lAmOkMSJjx7MY7WCxO7ema9Y8cD2Hmf+JizWKmUJHG9vWZGwAYChjfYh7QEtDYKjaYKLCoaP+dBriF4fnIe+iBm8XSW7N9R9Y9sU0DHDXVjHe6i/nY8QYTNLCajbChsmUJmOggo3YTobZIe/D1K2WY96warXUCdntFOsZB20Wx4vf36P9CjZhgw/uhTtHjmsNgnB6j/y69xhj9nsGhpQBo747rV+9YvPaXLU+TH01uSBSufCwPxxgwW0WkxgZ9qcOmERkmRqx+mw1BGKrvsMDJt+JMTUt/wUuHQyUBgx+5k+CDH9f4g7iqetNkOSgSPrB9S+QF0m//SxdWL4fxZKzlBwrkhgM/c/+GchfEjDG6AOaIn9AD5xEkksudZH09H9+mSHa40TSqRVF1hR3RJF09B6F+OCEmEaJ3uNY4RRhk+l55B2hPcPv9yVa0yKN7kgflxhv4jossV3Gr6kFOSXuiu7ar388WH/fuB6GTQky1I24B3JHAXtuxuYXOraKQEXp1quyWce1xqOaFFtWsqCtYks+tKym83Vql2RVMOj09jBIOwyHvr2FHILDNjn0+vZwaH8GZYP802QeVDbIf8UXJznli5N8yxcnITzMR/zJ5Kkhuyfg9yzOFXbPO7ogiUpWPt6RGtgyLWvY8rSsK/Q3FP1pss0N/19lJldlhiRoffXuq3CgrdHKks8kplMnoOArChLZv82IAV6ClCJmQFNkwN61PkO9W4Cl05NSHQOq2CoW3nLE+gUd67qG4W4dx6nhkj6L/J6iYIrGofXV/wFQSwcISJNmm8IUAAD33gAAUEsBAhQAFAAIAAgAc5goPg14BxbuSQAAP0sAADUAAAAAAAAAAAAAAAAAAAAAAGQ1YmNhZmI3MTE3M2I2OTEyNWE1ZTE5NGMxZjQyOWQ0XFByYXRlcl9yaWVzZW5yYWQuanBnUEsBAhQAFAAIAAgAc5goPrGRZiD6AQAAXAQAADAAAAAAAAAAAAAAAAAAUUoAAGVmODg4YTU4NDRiZDc4YTlkZTRjMmYzMzE1NGNjM2ZjXGV1bGVyZ2VyYWRlLmdpZlBLAQIUABQACAAIAHOYKD757Z/6cQQAAFcFAAAuAAAAAAAAAAAAAAAAAKlMAABjYzk3NzUxNjI2YWUxOWJhZWRkZjZhODdlYmY0MTAwZlxmZXVlcmJhY2guZ2lmUEsBAhQAFAAIAAgAc5goPvNbpkicCwAA3WsAABIAAAAAAAAAAAAAAAAAdlEAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAHOYKD5Ik2abwhQAAPfeAAAMAAAAAAAAAAAAAAAAAFJdAABnZW9nZWJyYS54bWxQSwUGAAAAAAUABQCXAQAATnIAAAAA" framepossible="false" showreseticon="false" showanimationbutton="true" enablerightclick="false" errordialogsactive="true" enablelabeldrags="false" showmenubar="false" showtoolbar="false" showtoolbarhelp="false" showalgebrainput="false" allowrescaling="true" />
<ggb_applet width="1000" height="405" version="3.2" ggbBase64="UEsDBBQACAAIAHOYKD4AAAAAAAAAAAAAAAA1AAAAZDViY2FmYjcxMTczYjY5MTI1YTVlMTk0YzFmNDI5ZDRcUHJhdGVyX3JpZXNlbnJhZC5qcGecundUU923BZoQIDSpQekttNCkS+8tdEJHVKoQECSAICBdFCKE3iKdhA4CgoCAgnTpVbp0pCtFpPr4vvu7977x3vvjvbcz9hhnnHNGxlnnzDXXnGvvv9N/lwDUulpwLQCQAAAA3vwAf+cA6gASYmIwMREJGAwmJSUho4DcoiAnp2CkpaOCsDKxs7EysbBwcIvwcXAJQVlY+O/BhETFJCUl2flkFWXEFUQkJMX/+RMgKSkpBTkFw61bDOKcLJzi/5/H3zYADQkwFHgNAnIBCGiAIBrg304A+81zEgH/HYD/DCABiJCIGExCSkZ+c0M9NYAACAIREIKIiAgJb64G31wHENIQ0XKKqRLTmdiDuVAQ8fDEfBKoWk07PWL0J7eEg3cEKdntOwyMTDy8fPwwAUkp6XsysnLqGppa2jpwXVMzcwtLK2sbRyfnxy6uSDcf32d+/s8DAiNfRr16HR2DTkpOSU1Lz8jEFhTi8EXFJaVlte/r6j80NDZ9/NLR2dXd09v3dWx8YnLq2/TM7PLK6tr6xuaPre1fh0fHJ79P/5yd/xMXEAAC/vf4f4yL5iYuAkJCECH4n7iABP7/3EBDSMQpRkyragK2R9FxiYeTQNQS82vaSaESiJ/0Dt6jZLe5JZd5fv0T2r+R/b8LLOL/V2T/E9j/xjULoAABbz4eiAagDDgpgyHv3ZrzGcb7MrwxZGHyDHaT5bM6P9mVH2u8DbKbRHpGJFF7Ph0xg+7d0SCy1QrYsVj9oAFSyA2ZvNdk8WGd1C515UJ/PYyQAGxr/ocjgpoiyCoxYbHgrb+AkDN5Vk7/xCQkx1on7nn7TmzoeZnfdOVoseRoZyxjRA2YYcdstSV10iFKFsQIkuK20Ok4jWvOyf4LoLO0j0EolgB+E2Q3R+d9eLLP5CK73VFacfGDifRoqOPUMFR3wcGIEJQjU3ZKQ7rsOgdt5PaVlJkX8VmjlTgwVVlKYC4KKEpBZXzNbjvSKekXtTijCp53yKsbQg+sDAI9A9oUy8w5vGTK7pbMFbxUcSITFRWQCPDrfcA53bit5aXM1JxwIuRGA+cidYRyxH037M70f0aVVKv1J8VxHXx5LDnxPsf+bUw0OAksmTDbfquDO0+c2svq5FgG103jVnrxxTjNW1xiDHfvsGbAb5Mtg7di+n6ZjQjE6ejANMenOe/KtZrxjX8wlGEUbOgNuH5G0PGM7ozopd1R2PNhz1zd0Xrjr4ds+nH6n2NaIgU2B+KzgkyciEiFuJP2THLTGYWzlsxTxjyVI35Gjrda1Si73fJuo1gGHHe5CjlrBfkWqojuCx8Iq238+GAIIDwpSZvanl3i96q6am9TXpvCJj4rYSQZMP5ZODFaovmRdrXsRRuV4V/A6h9ENcST8/OF5Bvoq7gAmSerkLkAkVVS2TgcwB7O2Fautrq3xWKyRnyGl7kS2B9pRnXLEGB1RIzfGt+PZoOZutP0PGHvfku/5j2NrzEXvxrO8AI7WorgrfLlU+/7k+FcsEOv+hw/YWB9JgLOuix25whX17rfHixCI30bAiI29zb55sZK4W8m6V4st02TroU889oai7G2y8TI3WYAz3G9d6R7+cyELy2u76EX0opYLjjbj0M++uztt9m3Lo0PNYxOw67cxmw1VvsTQ/2nk5NuITV5WmjSphN/tZuclgo+Y5hm3j1vGU0MF50vPPkLYPLYebxGQnf6F9BpmX8+IfE9APO+QsVuV0S27Tq1nEyT4KV+YPL8OA1C8HW8Ly2MEswfmiH1Av5RtD2cMNC3pAqKXpdu5MbEFiZa18y3iNcGr1DecwR+qntCnM930aHYWJZ+R5Ba1u7+OP39wca0FYMKehIGpcgxrDnU+UHsvtEi9HIl+7ixQshy4DFPoTwqDLAplX/raxOo37mv2+AxCcODs6jPfsAvm+/o7Yyop6mPWo0IitYPz5iaVmLHfHG8FeE+cDhWzRUwCDU2kMQ6cHkiy8Smsrozk/XVJCgmuAmel/4U0xcgQtAw2iIcsnwMHNFOcVxoGD9QFT94D/I4jAWJW0lLGAFidXVhYQjEmDERHtFDkJ/Dh5Hg5NjbgQtdPwJkLy5spy7MyZANH8Yvs376dPJysajGQh3XxJzSvRcmO+xzXLoc8wCUNhSq3F0qwT0KLVj+tu4FfqSOaJdQW4MhqN7pj95OW3WvKeV+A9HRApgOj5XVzw10CfesLmZwJK1upGSxG21ZQjWiRN+EH5fX93JgBr1tEFbJ48pTBUGO1FwKVfB21quyP/aHseNWgi9a426repMUXc2+T7jPLsbeqRhS732P05t0c7Z26I9zggynT4K2qgV0glMn5bCHpQQfsuyw8RfwNm+lIG1D5n3L0l+A77Oyuf2q118V6hR7/oxbDJp8C7G9GC3Z1ZZMeoCisOrxmcq77wPtdvaeeUIzH1/pvtfbPQI4Xnkvkg1thjt6TMs6E7+qIP0txdHQ8DolRns5+WzsYfWFxOkQeBxb0tBgSvc7KLQzdvXc2ENkU/lzxt0GGym7h0HRNCoB2qyved8/I8+oSjQ3b8jvDckyLzmepn6xPn+RRZZauTJLb6JCyOJYefuJCHrk+4OMUceGZRXG2YDTYnk38XxmFcIgso+UdwDG8IMxjNkdfm3kcwgs1YwSQOmK/aJp29IcswTENje3ilyuKtu8KBFxqcqwvH4oGvyaXnzriCaqmT3xBvHVA1QP6wRXE6cwZiIOjeMiy7bacpSBBJriVlIkCTXpitXM3Nf0FbXOqopIUgqtwInp8ozf5QGOjIKeuvf41vv+AnbMdso0Zm4xqu/6nFvkSbGM9Agk/CoP1rwNEoC9PNWy1rFl4UpGp5touRJ9obWBNs/GSP5oYI0aVwzvvXKrqzYi4U+6c6t7AlzcWDBA/t39nmv17M8h8YOrUYvVqBuyFwtTflTpNGN79ZLBKbqcLgk16CZU0/LQJYMMAx/WVTGd9OByf5wjSaApy01ZUHKfUaFAw4Nb/R3713c1yYiEMmfhlMPQVq1UXs6022udnagtrYtYtAX6gexooKOAyg9txwOLXdyRUGHCqncsbXCZYIqVduYXlyr5zan364scwuRUQrkZkXp2kvhPSDh6TALq7xlm8WyhoqanFUcISifvelTfGKtWBkAAekGfK5VcOz+MlYKFihtC6sbUmh4ST7cz54gXX/RfSxGNCwxDPRm6vYzqlbjeOdIIvzIEBaErfT+9CHWNfrFk38Vr9iB68CftU4YhsZ05SIzfa/L6Bro/5tL63sDZQFOz5fBjKWnBzOwUj0/cT41vCVu8Tw6ucJmjV3LXeCyCMuBNwKoho23H6LruSb4cp/7m5io5dTGx6GPu4Kl8c8LQdUczYoUJuYNAoPQ1tJJwHKY6RSDXAjQhJKUuhYK/AA3Q5S8Ig94+0q14EDYvo+gubZXJLfbJ3wU7g7WnjWwu/nk+affu2UeVwnzyHDGr+pFR8Wg23U3F5xxMJhxzkb2eqRT4gbgNF391LM3nl8dSRFg/f2Je6mYKP7561yRDIOsO2d3M36E0Sxa9XyjvRzH0VTrsx65V6OUYERemuRYyJvzewri9fyCPIkgy+kVzWfJqpuEsqUlIm2M05IteY19sQ+4zczPUyfmYdTuT4dclCcfY3yflnwUo1aLYEyouYiz3CNyfdfgKY24JWiHnJ7n5++zKFA1Mc36pw2I9OU52kTU2etJs/mtHmM/XZc0QJPXXkuHSHcPBV9FF0KbG9pQ9o/0cZd30XeroNpCPi6zidp8sBHhg2Ee2VgKIZ4/Seu5m2raSwZzFZDe9m+CjXbyBxK2tpAQac7atLZGFjCwYiAWeMyHmHRK6potbtdooYauurEgM2DjQGERadHFttoRvIghr3DGDCznXJLm9cPaWm3RWiNetZV7n8D0pcc7Py7o4N+3rEpfYmZh4PTHmqCHkbYgcLcv7C3A9KWoUPgIe44CvJTvh3Cj9ZmdNOzmX+sfDRQlUSXPfLmK9UCflQz2MOGtxpZQK+dTKg5ecdlguvMxW76Xyl3zsunA9cXaIa5Eta1GV/kh/ii/V1s7ZFKoOC6atc1PLOlk4Q6dlHHivefUFvujr7v0cBQ4M/hJ1NhliEuUF9pyUvCPolSXNzFIpvr6K5hWnO4oQyzFQFCJ+kUiSUctCuZWz+H0ZUXmUSlNwa/PzX4BNeZtmZ4hZ2LohcNim+reOo8WHMyuKVL53f5hSS3qX4x43pTHH7huiKYGl+2PyOqtpogBCaJgMx6SrS3deFIa8aoqvRPG9xcGMU00iOcGAjLE4vOgDZZHmemP4y8QjipzsODP57qDwPZvbXdj5Lq6QvY9OExICaruNFGXi5bmbCAkjwwxyjoFlreeDOrMR+0DqT4biRGbjEbbdgxxD42FNK+8aH0QCiNRIQJgTpDz1jBgX1oBw3AChRoAk7S1KNuAjKOuc9w9Uh2ORkiSkG2hkoWSbH0rnljQa4IesQ5gCcHhcnqomxJjARE8TwAMxUenGEat/VM05K1e8A/SCqZziOH4N6low+8O+2wSsBopwg3JR1qXuElfTWdcMlZesC0GB5vffFMTVijMZjZg1Vn5FBDHuESYAxqir5ADeBkZMgy/05JctWQJz8Ua3Mud5Utb7hpWn3sRNjVXsxLUyBrvWv/Ye04I+KCvEooNw0Uss1dvy5j4K355+oBfIvmFjpve3CjSATyQo10y/O/jNx0DTlg6SObU52H+W69EKpJIRB453EWDhpM0YVgB+dSqD8pZcGF0+fgGrPpXMYkojTvMhoUThwsxubP+sZk+3o5EQijUO4M1iRnsGjRA4nRyoSEbgVMDcTACCLAxsqLya8i9gCDvkHyaHuNpWp4GcsMfBegIT+E0St4zvgZ8Bq39afqbn+pgD1g0ndZzbspCOawXkxwEFWuWw0UmDGJRuDwtQhxuwkkBLgXV3NmKZCHPyOSNzQuN1lhzHwhibQ8GVzNIRVHxjBRTqdmY/5ldbxbju8r+aD1BsLd3BZr1jRRajLVnRdLMMw2+BHBhdzHejnyV7tLLrdyXOkkJJPDPK104HTbEU14c0R5vcNw97FWjwTF3fNf4xXpJj2fnBNmrkwnTKuPj0tQv7vXpEzop2Ep/xi7UlmsUKIVN64uBCBTs2TcPz/IR5opwd/qIHhXlL13xjSVxjfeu93ZCtemJlCYS1Vk2mMVWGNOmwDP5j/N0NgF7obfmL8foT8jm1lLTazu0hVZ6whz5nk00emh2F+3PthI6VPB2Me5RKh5fzZr+qFeWoudmnUtOW/W5P9blWlFjtKySbKotV/5Z8nROMlLDBPZ7+eWYcrMlYUsjXDxpHoyStRAjHXCRTTKmbikY1xYh4hHkAEBNNwA2X3+BSEwJAIEZVSP8bpOoefgCa/na2FvMvAZug2Il7NNrcAQ5AEMdKSY/gPA2dEpFLkOuDKpsk/1S0ipGCZ49NErlzNIHW/YtJbpMzN1Ts+WqltlT38ELPkfI4XrHefu21gbj6t7TdvJOymnae8YBkFj778cNSuzr5lj6Mkf21lPfLd+Xkcw4yjjQiXReZvaUwKki9xpvF5EU0P+AYf6Ajy3ZsDFiAIals+AEnOFY4XhGlHQiwHYtla4U17hk+JMkj9UMdYt0lHBlWUj7IQKaeiAjoUlPKbSQQ9GBy6p5Cp41tc/FitK++eLAim73BsopbJsDfpRrPT3HiNIzE6SEyUmIq2uon+cL9twZEjd65WbJGf2PdIlSWVm07LnfgMQlXjX4GqZKnaCPTEqjA7X85OdizYJZtu9yGNiQakCZy7FlANcEc5g5eqLHi2KSAvqJ2OonYcdLV6lKCX98OS+aB45U6vVaU3sp05tMSWQRm/nvY7G4Gp81ZrJZbDH+/Z82tH4M9tjm5usn+mZTAs7aTA1PxEzDeNJEJGj0krmT7FyBgcN/Y8JzSG9q4+NzyYUjhX8A3HZedI/FrRskoxvyOhgEcreqeoU6S0pvxqgApmCLabz4cXZBqpiy6bfSoH33fbvqIIa4M9aFCiVutmONky9zuKWwNrd5+oC2gGpQeY6ezLY/wZP1zPq7Qxvm9/8mZoRzWHrm2rKJ5ouhWcMxTCYfa6YXPlJ5ATCA8DZ58nyvhOV6Bk9+bpHdvgCRGdMNr/0xSTWEIIOUfZJn8Q3Y36PpvZBEKPfyFjo3uspLuHSVcciwE9hZ3h9MBJuh0hi8aj75RfB8rdLhMtPZ0fnTsMYfxe826vUtNMuEpa39ucqsC9U6AnK34UsCY5CDXR+1B+6eOkjwfTRNOlWM85KXLNj9gT08H5gqUH8PgTKYwZ3mgiTEzdKb+uE57npAkpY8RGelmJQAQUMwvOwSjkCZTy3gC+guYKj5tU7h5searMpdbto5+4W0bWGPPtbWJnI6jIkxmjw3AczFgA0/SivozLg7bhv+GiKp08ggkfde1MNZklVlJ6LuDTaAziZA3DT+9LLPWSVZAeA6Diiu1vDsw4Hc++o+nYVYilEAF9jYzMEfWL6Oow7UcNz/ga653Dv78ie2K21brJ8U6hXksE5xeAcWNH4QFb7P4nuSFwdDziJrSGksoKjlnktyJKVe2SFpuksualLcwkfBNBCoywc3C3kQifE5KI6Gzw29MLqlyT2+Dn8e6TfD0/Y46/aJ1OtvrDyH1Fn6zyy3VFzWx51P3UI8/fBQK2DBKYxh4/Y1V4P19BQHGdePOw/xaAysr61GNpEaGC7QXv3R12RJH335Al/nb+bc4bj77WW7CxCPHqUQ2f38OQYolluOSykKr/Yjwbxwb7ziYiQGgEQS6mSU70cZI1swzUTv0a3niRwnOZH4ZmfJDwt67cS2RuSiDAYooSFw+XIZd19TCWd1M0y32FzGt0mIkvWtEsxb862ZupahuKaWlUH71826ZG3tg/J7UCtA4q4hU3TZbObM61zWFPwCL/kNT/0tV/xcCA7J24j70vh7MohW470oIGxYJHH0KTsnLsTrZxBu1l+qVehyTwVyLdDI2wnxO8DjoTfaokGsyFoRRplDWIXy7APJo9W/0EJ8X3bJeLL43IirItD/uzzEr0tZPqBS0ZeBpazd+b+9RyMQx4qvEieQrQgJisG46SxiVTOHLpeADXZO4HrDwAbwGd69/x2DWyFi7Xp9yBL5jINzWo3RsS/I2/NzYOPEbOtlz84QrKxSo+aWTU2zEZRFHJjaB9S7ZiR9Kn782q7rNJdzQILnOntsq76mFgtfx90kCHPl402WV3lz+YL/3EIyH2Y6ILYdDegDopwtF6W1LnkrZ/EBpwifjb2hFZU6Lmi9b4tvM9B+U7gu/fgr7lnWK8yOMNPmsQGdQVnOP9whwoJ3ht0l/iznuNnnSHb53kG6OU9zaaTGAv9r2seyWVhvyDOJkSgOJ+SRtOm+ul5jxBvg1z/4PU0uAlC4qAU3KiJAwUYptpH31CPagZhwqxWwr4JPUeZ1qIynTGQuhDNs8NwsriIxhlhmiR+UOFWa9KOCOqkpInRvG2yKIf/3oQReRZabsBS82SqFQrT0v1tCoPxH3b2WFrMf8LlNb5uLbME1Q3aiyLdpBqlxvrVSXlNQLZM1a3H07SWLit5RgCJTiqfyqsI1m5marz7QQwsz1tg4p676sF0B4SLih+auSM/61JTDXPMKCtNj/Kmz/zJR/EAO/KWz64mA+yVbXQWHOGKyJJq8iP9C1MOf4hqPGxhzCbud593CwFaMT5/OGxD/VU65zw45LkwX4X63767EUs1Dn+baflIsdLjlyr2HdRTXAwGiGQZVvOJayCCqWXyYD6Brve/I9/dnzIkFk6cNC1nQclBVBVwIVPhVL0l5isf700ssdREPyOYAyGjknKpVQOTP7HFmGEmrGj2nKr4isrL78ZGZgLQE46F5OcgBKjiU7mNacxt+ENWuPhdET39n2UekORHhusjik5764glGEKG6RgFtF17KoJsZfgy75gXNhkKFi7hBIIzh5KleHpFcyU6nFrDLWTEjUG5kHGZd5iJwZrody2neJifPZId824RPVJl5McjHg1sbo4GgbB4B4QPGLulk/IhD1aj3DoIgmc9g+P5CkSzq7he14TNsNIJBV85rGCZWMbch9t24s1osIbWlDo9/SEzD7xj1+NisxQSBnnh2WVdJ+bi5N2xJeAA4RRV25PdNLEh2IVp7B38lbq7/tWBPirfV82HZkn3Y18TTFx8DdfgrO+jlV+smdcAzqRttZNq66U93jDDfXchwPt3ppt/KRYVXnFbWdC95hnuhCA/0dRuGlHehjOPvykQNZ2kzNszsXXwr5O0rw0StOSrECNEaOeQUpJwUfKW4AkBRGdmNQ/2fq/59pw0gLpkwmvhB2acD5RgsmHhQGC/idB8Lyt5/guwCMJzge7V/AP6MfYimXHBfDoJnp9kTpuaboKhG7qFondYwopYGRpOgwe5pZrpryyylHZG358kfKk5Q4Lj3h4yd4ddbG3bpeNphVqQPANDY82dBALMMcRueYCkpAGVuXeoqdmrHNU+bGWcehr5YKFzImbr91ipEQow0fSVImq6v61dgr1EouEBlfJWgqtmFJZLjevltmGMrk9SJH3eVXcam4KGdCvOOgyLwytKESIKIjA2pwM9TzJu0pxTMwKqy8bcTo5BEhuhofglt1nBQBV24ES95yIwyYVuS0JY+QytbwFLaiJ4k4pG5wemcq2YvV4IYL0jl+X25dTB93WQgn/4AtuvSjhe6wDM2sJptING0jd4YhfwHcbK6jxGsCVieDugPt8iOWriuFQq71X34zeAduKtsgL0PlUApj5nSoxt/K2QzsC8UmYxkvVy/qQttcBxmVviQQB5dK7GmvGLBHARh/S77E2gaNmPkzno+AyDmX1iZodWpytPuamY0Yym2Be+b6avp83rEBpyXYSSZtB5niOFTcgMo1MNk0uCJ0uKXnZ9lUs6PmvJcqFPoNXb/JdbUx/Amm7dF+TiO1En+CNk4+jFDOFreQh8CY4/WPjJKs5j0UkkiGYLV2tmXhX/H66OjjoAhRh83Yv4CsibuuzgnN6kdsn6WVKx/qezDIMrCcjyUZ6Y6n/RjOGHLV4KdZoqgIatBt/JD2I8QqXanVtRHA9UFpp/TKzc0NJur95IZvyrh1/xtmYjd8k1GQ9j809F8o5C1IS0hcTOgqhOTqj0buqJCPJUuG+IZmkQEktgw44x/1hsYpMxZr4d+CigMNppG2VnabQXTj4bNFNK/XMPKm8caRvyQvAYLZze+dKri08n3CbftL3NMQKv00yXPYbbDYStNrDtukwKfKQ1n+xEqybIsIDJBjOfzARq/B/pnx2TGDG9rVwoyv/C6Y1Y08gGnRI34ipKBuOq5/ztH+c0JHKZgY11/RrudJBN8yLqXcrRx9pZRSsabDDtpfyeR+5VEDim8dX0wPtc25czbhcfT1Jc3hT6XPm5CpFzRMVWZeJDtYYmX5QWVXUM6nuiGwbJ9k5rCnYlkMfWsMDvQdC+DLx5Op7CKj9cWO8WShffi+Y0ligjAe0/AIAYMv+bRUNvfOHxd12abU5pzQhVHVS9bwVUq9ChzXMYjpfl7IrquSF3jt2wRtFQOaHhi0Q3ax+rm6AH2TeDdlkBYymr8QOoUG/EP8Tp+3324ZqCj0PN1fRjorCJzylvVIEOxC/YhihubRg5+f17WOkZJpP+Py/tojQ29PwSX6IutKk1OUHJ9RF73Qbvi5Uveos0S65nQeZ1ZUZar/eN2B3hGWvGWAFD+i0gYd3ygT0zGzNA0B7zsjm/S2ERifG+u+eXmFVOx+k0i1wKsodlIK3BvLJOl0P5HiZKwsrEmeRy+FFsJ3Jc7MWgOKGheYS/dxCA1/dcYTE/0H4FFN4X/7Af+rm/+Lolh/APnxBWG0aBvjG14n9vYx7JYzyXWE59qOMXyO4xwOfBgspm04Acg6DzFrAY5FBBMbgGS3klVIgI7hXeTBLH4HfCnb5d3343pmsxakCWQvzhTLeX8b1cWnhsXImOwcWA3OTwl0Fj9EnXKwIybJ3f09VZjv/Ggq45UWTJApT9wypWXMvpPfY6MLbaoa033G/SbozI7AzPFWz6ZVbGgQxy7DygdDyurGNihz9fzxKrTVET5QG9qCFO4e9BVQq+a4Y9Kjj8W4nobFioa+zOnZMfiQODsJjKYHvQIr4/U68gnDcybfvxcX1BYUZMAt9wTmDvKIdV/1/Dwwr3oFIGqHFjomml/+5J5dWmPTKfGchaT2R6z6VA9Nsjj5l75YqVnWImVhcflZRqijdTIkkdA5OU1O9CjTPzE5UcNK0rDEkDFe8tJxsdAECjyKOgER4wD+UvkEEfIrOAZF4KWbKNgxHs/PY+htAIjxQ42EsIxT6AZh711gyZ189Ex+3OsHFfGTDwdS1dzUz5ROQrsTHN9s5Idk0A2ZDTKy1dkFmoT/gEXz954UgsZig0aAifBEveF63uASQG9hvK6E3lQY89no2XgpPwGj4dj9ixID7qBEGg0XwLNBaZNkjusjonLGYUNwq9pk7WIMRMQcP0/vDWc4H18Nwj94x+h4tetLz22NPMrZDcVbgWt2dAVL1r7i3z6J7YWUsSnVW2zAapgTvIgFdl/zVEukm3fdcdo1ydELgVQ2HtTYMC5YklXMnzuR1XxcC1PDK32/UrNzLC2FX24XspI8RTQzZ7HRpk1yYwC1z8DxeH2wz1RaKac0xAQNS7opiaB/2UvXhv8f7IWTasGQKpIU+ihNeSSeXIc4XBc2zZayG2SCmrZT8OVK/4nPwwIMg2HiRoaKW6icuk9fwugS27pgSjZ/AXUz5CeFURaOp2ZOF5MBnmwk/jpmX+HTeU7AnT9m8GMRwdJb4wGuUyMwoRAkyebPMpfTcJz9HMCxVb+lMZau7nBAm09ZF/6cz45DS6LtwHq6ZuoncaZxaWeoGPeJYrkeu03E7D0MsPmgYaBzYn5dKzBn8kNv33Zb4/WUJqETRvXc7yZPpySosofkaior9iarrS47ohZyFrPL6V/x8E1iBEEOC2+AoBflTUaLUk6HSnYMoc3h55Py0Jr1L6X2vcIj5vPpD85kWYh7HuVVpnUbeVf2zTEykGnJDLOnuuj6JwSrbllUzfinQHNyGktIAfmgqlCoteIgdbU9JTdhtbLPty2bBCeWnlMdhn1BSa3agbIZliXHSrf7X6rLBWoUTssjeDW+qGbRRB4Y9iq9StQKPMZPE7k+BqKG3UhYS7YmQsxY2P4CsgGS4dq6iAr5SPgfY4JYYxWc0lmh0jGAxmAusl05W8ZEXz3gnyKjHzQaHyi21cWgbAPgv3Q9/6WnQjrIq3RjikA6MksrWP8quHMbaxfcRF91FrfEdv+HgHP11Lp2bn+i7Xma7JWAeWvMK6u9YyhWIVmqDv+KIiv+iW9JpS2ztmFsMehXCbxgIVPqc3pLdSZVP6ax1L8Qw4D6EVAW5970seh+nkBoNnSuN5agF2/EjOQdY4bXdmrcVt03kuzvSDP5QW5mBElKI6GktmOdJhwD3SXn71vyDq0UbCZK7S8hMQd4Q0IgP2VKCJPyzgqHHcNVmuNlHhsvZlbKJkFTa7voGXKgY6oICpoEVXBjGULfUNgzIikN7RTFc8OTDmiYK0MKYswYqMXfJUOBBegjMLB2lF68jSXrKwwS6aXo2g2j8ETpfUwYM6XGjcjgQaw//gJk8wgXpskAfOFt+0htBTJusJIOg5BEllMwDD6NsoQiHX1pX3PxHF9zbp2UiSz6xjqrjd0DUv08D4HsFCMPOdvQIqpbyTu6iWcoxvtke38BmEjrACxp3Vxk22xkifJzrBPJex00s4x8bnWx/rQdLrv0SHreRerx0F2RW7tKLpvYEpGCZL6L7hSqxbubKqtY8w3VeLfR3ccNUOPQ+rfJbXyvwAr+9LED/jlyysaC+fct7z32bgNm8R/suxM4eJMoRA4/sRS/5/zGjugXhYxzuXivX9p+C/+xlMF9jwFaUPuBhYusR9OZtnIcMkjjVb0Ensebivu0yCnxpNjoSMdVNb29RCghufGel899EvWCXrlEa+5bWUwjNcFTf663upDELuIjsgy4oUV5kz2tIKaRcE1eCfjXi3hdv+e9eYSykPHhP+gAyVmA/gqmLhhJts8i9gilf+NTChlOChNvUNuUpxYi6bOnFzvmowJech28ayOmQvpnzCGdEdd2o6wldrQUB1nOR4Dm3AMtlLUsVKeaRjB5P0xlD701d2ccL7MdsypgFbRlPbjjsPIxnZSMylNQ2urybeF7DhYWv/I+SYQI/YjYHra8ZE1cxrSt/ZQ4RnJEU7KP0xvK0el3Isn4HKkcBQbcMGkiE5WYoQ57er3krXGt+AjiB0c7s/jfTPvdVqy95k1PW4dbAXeahy8CLomkhVRLPq552LcNKk3fTva3I5U9kbzgCLaagYq/px0M0wGYITrqiMgb2V+EPPOKojzj8PU0lHfAXjBScpvUxeZ830THeLp+GHHTKEOrVemAE7GZ4CGjssg/hwJQLhy/1gNVAZ3VxTRYx9cySHjkxEZ0s9hX4a40pJiepi/LF8SoJgDikGKiQqIJKUIDiGSYPIQ5MdtIlRMc5HFCFxfWG+ZjwCfZpj+KhfFzh47F28ObuUsU5VZymTyf3hxDUnt6GJ25WVDtrOVKv1HEHpN9wtc17zGKAnt7s7Oq3RRxX9CdaL6mt4Q5htZxjv687u5cky2a333sOl8DXDhydxA6xtfHuU05V24WThgOun2MqLy5toDJnXXy2Brit4tf1DktsHYvI5g3fDA3WSmtCKBHzJ/BN77qKWSLzZOl6WWsAtZoA7rdNcY05Gu9RGXx0RuGcp5lg77kUSrMsVk+6CTSN/0MccxIWW40sxp8fpKPxD3NPtVnmOXXSVX+58lcvA9qT5x6un344UmEtCO3zCve/eLG4j7O+YMWehB30Pim6voSEF0puCIK5GtSuiqNLhpaizCyATjymolt1rvatFWN0tUldUX3cJBNg5Gr8XibqD7vmmhi58RgTaMi5QNdtp3L0vdVc0Md3BPGDcnPK2ceHUsWFjJPMlutYFpdFe7V5J1PdauOb+l4y0LqMo4vS6OBxGg1id6lschcR5UvaBtdQj5Jx7Ebmn1q5PbQtXDrzJiAxb+wuPVuPUMegElX7M/o2I26p6BipcJLW8AYoe9UT/BeNQ8tebIwcHk69krDmPWCkmua+EpVylvt+zVV4ImTctnfl9uO86V+0DSZ+Rc/cM+GZMv0GENTrcrY/Bqgs5X6A6JN3QcjiDl+14GXwUffx+v5yqvHazmsYp++Mjc5xVARmo7yTh8SNCZvzAaRuSctEXg52ymhBUb6lu6CipCaghiD6f6m++HiX3tVQMBmMuysV9j+DxXIxTfuioBekA/w3Gx0trOmrM4NzvgEc+y9k/fIQMfTCS4tnvV7ywSsqUXpxUARrFr6zljd4xMHpBTE4VeRnrhQOwA/laKz2fYgvfigeYRi+jIacV+IWaYbNtL7RoBdTNxQLMf9ruSfOff8Yzs3BPPbmlETvUX0tiwh/kaXw1Rw+DywHWKPOBPr5aZOUPfWQPmZZD0wL1IyD/E4dgQUXZQIx0qo2OojHNLQDiyFfG4/5bHZ2cJ5Ij1khVI2zt5vWIJJO+yWwves009pdcppJeC0Tnf45KMPrAzmZwU6nJqwG4+DccQ/VC4KcLGiMSkG3w6cvI3qLdHfopKM50i47Vb/Ar7pxl1MeKy/777/beyN1T0+2wB9G22Tby76E7o5yHae5qUsx1+4xka4Ob0p8mDPdEbBK2IzzVN2T1dg1wMjUAY4bPMKTEw89ystjMuk7DocCvk9BsdfWAQwbrXPovR+Z96RL3xC4S1oQHHC5JgSRuYBcFxvu36mwGbndCTD8VNcVOAO1oSBm2a4pEtp/utD8QstI9ssrGGHJferAOcJVjat6XtEagAw+/COVX6v3xILm4TNT+rZCpw4a175rWL/TWsrijUKtsWsKdfRpLO5lQ7/JaaKVRHFLS11D+g8Ok1UYdJxxPv5sK6rfvPjvPeismQEoHPsRzfmZ4KeuKsN+eFV06kfXfuPv1PoVEl8U8abZYcGBne7q13Bo1dlWTAoc+4HK+Ky82JWrYwVfpJ5odIzzJMB5xORI5MGUkd03YGlvZduc2QzjK0ds2gwdDHFlFtNWU5NPGAJ/YwT8orXywuJJOltv9ySfdgKi7b5x/oW/uNq4rsxoefd/wiVDTQJbogfIMBgFzsJ22jnZv1avH4q5YBUDjckZeQbMfPbanrZaa9NE6+6Y91v6WT7IHX6wxhHND9HrrFP42RcscLJtXmmEIyof4n1cxDghLVn2SITH65qeUS9xO/5F6Cu5gGCJ9rqULweyQ47Xm01PCRARwcoiygSWcasHmEcoSAALaViSN1KX2OdLqB78sai5Hji7+cL6X2yeOH1WSCEXkl7URFsE6Ytqf7kCQNwHK8tdGiXH/vKk8oNtxvjtuukMuzNcrzQeAXWbc2dyvsQG/W4F9g7F69bTSxnrt2Ib7r1lVEY98hchj78gbSie9bzGWdfMjhCm6CoQOAto/aTiR2k12q00+Vzeq4tf+EJritDdyWLR+LSxvuaSnlMtiZMuzHUh+Yqgzpi949FofhSGcVSHOWErR+zpgjsnzfKn0d0ifzvJsO/Mv0ms95579EG0CQ42R99Egs/QL8jqp3Xp/pqojI02jN+6WowCDMIL3qx3gcGf163MdGq7qQJJBsS23adVpJeBcTr9n6MZX41O2A4X72v3F235qDavi0QW+yfEt4r3Dv0/LpefBIjx/irsJ9D48FuoEP91KLVWVzIEzsXAFWgHkNKWiPp+mb4kHZT+duY1fyyWF9IpglHtjh9ist3rP+MLf8jCfKJ8Jz6J15KdUBsOVcA+rMjHxDXuyt9XIJVpSjQSZEF//mMt25MdtsDU8wHgyvVPaixzwhfvOn7CyCL8dPUbmZ/fCg143LrKN/TyEgFfFIxPXLwZBWcdU423kA2mzJA+EQF6r0pc7pn7dqDIvxpKCjp+sWpa0y0R3UxmynZ25G9J1zPZ6iPZJUXpwb9FNPMButBKcY98WUtYctJ8S/MrxzQEbH0Ndh1l6xxN/f8MX+E/ZYAYo5/MmUfXSFO2ZOgKAj7MQit3nlM82iPlT1+W9CUPvb+E6+vSodsoaD7c6kToj+0NM0eRiQJ5qZnIXJtUiNWKzVkVirCCuLdbBxosaG6zyCAAcdEXUqkznHRaiMOVIK78XR6+oT/toecMFCDnpy2QGzoqhlfxntiEHd2zbuT0uRaFvPpdVMhvMTIhppyqg0311LsXUOwLnpGw319vcGFT9HnwFSU0PHbYopFZNp6UEbLzoP+iJ0jqlATs8lpDrUZzXXvwMfvBm5zjFGlXPhfCgp5oje9jNvYMlZzJsXnS3Yf2MUzadZJYF6PL+ZtwAlN1hxlZJdyTsQsHOu8DvppLgWN+xjrUnWzqvxL2RY0Ddc98p2ZrLpntLSrUOcT3pEKHXbdKubDT06kXL/enu4Nljjhw1t8eFmbmxH1qIe38rdG8WTaiMdZEDDcqCxeQmOZEi7TTanltoAIJnG9cZYlav8sMPPCXAvCQJoQY+C/k+HfZof+zdG/TZCxf08TWlQH6Dxoo1xQuabZMhXr3dwfu8jJSaWo9Vg7VixjroW59a7Pcbb3gPly3IqH9q1omUzrteSo3F7ge0nC0rx1QFVyE1Oog0x8H3+ukF3W6jdsdHntXI2nTJqkOUsUA6QCuJKtbzCgd48tcqxeAsIW8nQoe4T2OUEK+pX1S/7OW51ed76PvQk3WBOXDcF/pPL88m6204GM+cCFj62evrUF+brNpUf4wIL+84vCT+7y1tL9rQuJiHmiiQXi5cOauQYQX+lw4FB4aKCRZ4Wg4YiO57o9S/+dwf4ciV1BAT5y6FG8zeDtvirwvtGtJiP5wCOD9P0vlz+1kP6kDunJw7IHBspSOTog5A95023WW3j5MKU8Y216LeYmCmsS6RKWnOMbnz2Iodej+UIgrjjo4evs8N32Al3Qsd6zhOzn3suuyhY3csaxlBI1BJ1P+Uw0upqA132Vmir17gi75eVYrlf0nDm7NRV/Yh2fcDKNnOCuuzuuc2BYUCfBJHs+hta3Wz0sXAy7A0mpM6VOeWlayg/E+UF/FspseysiO00DfVTINUX3H5p5Ptz5/rOoX0bjTEfkOUEy0lPyLbQp5UVfbmqAzxXMY4VHv0p0X4Z9gR4iVjF85NRdnKN0ZD5/wZRaVVFcFO3I1VuowNbppanxYFm55WwklIElvuQm+TNo4WTyJ1IWKyqQKp1hIZ+58V8FFvMmnzq4E6tYGNrX7IHXvriXzNr8r0HsnROjdICWFJdNl1PtSjl6Wp0kp5f6L0GfW7Uq0wvYPhTb+XnX5sCHt4wfkN6WaAYj5xkoJn8Nq6C2kUlfOWKySn4Tnki9+Ejj7yMmAlJlceHmHAoOFtRlaIsJnT3DyD1+n/8hKYDx1YhEGl84tpmh8XXEPb4Go1+lmFNnvVohOU+1wsi5HTVRXwvWLik+bZbL4mLlVT32r/s5F69XbWzfUN1kugNt+n96fEQMBf/VqPx3lcqGP4+wC/Kf7Rf/dP5IfCZ+HZhnT7znH1Z064z1UmHBFkqwtrBj9flBuaUVuBNJNKe3szDHLFye2oXvcO+k0tWB+ktN/DLLlVsqLsS5zWMujabeUIZv9t2JDL2JhVoygTdM++unCGzIz4fFVbA5n76NkoT1VpUrA8uet5ywL9qH75r9pYR2+9moL/f93q0uZlREoxNhdjLgvMst+VtcxmLZLT5n41zBp25KeSiTliqthdHSndi1cY8VKr97TXws4d2hAkNG+SgtXK1WtL9cJGajqVODj1cTrEBBa+Crxj9K2TvB8qzLh/Y2iVqSUipWOG01jrqB503gL524299oSmYpdUCXbsJKvFxw3QhA9wpyFEbbC5APYFWuNH+px/J1NE2gXdvWDy8UJvgyeWNrxMlUqNDFD/ghRRZwfD6Z79rxnHbT/6HAGGct/dV8BvUSBtdwtlH4MYDCOUXcW86f/umugDFnYi8IjdkAVNM1vYWCJeHyBIEpIsR+jQr0w5AdWT/DuByJSJ0lqTqXkdUiAf4O6j8cHrtg3ZQT4Wx6Hm3Pa4+Wp/Mlw1P4ylgNKNfbawMlrJbs5Q8AWwoiWJnM30TlZQEaFmaiqSn0RYGfOeuYfRVeg0fxJDr0+ClC/CtORXYvtHTWZ7TJBMwtGxMjGi4OHYury1Gd1d3mMnPfv+1Yz2V8fokZMxetsPdSWQoKnIz71HJhThDS27nqqrC3d1yOFK91WkedRj5jt8HtFdJZThKOkaT7WygAt93CYj89grqxwa95j0tZZ1dQDbGRDVepJ3geSyCxyXPV+JYgbKZ8Kr19BbloXPzApjjNdKB5p2rdalGIsRyV7hMvoobZy5q13N9xvN8i953Hx7AW82n7RjkS1u91vknERUILqB6ZIuZtBbvW82cZ1uPzim006wIa5TPstfOKFo5VUuv50JwQPepNVqPSUjEd4G9Is3aI2weOuFWM/prTOaaepCHBVvAdmdzm+JbFuW9BsiXrLg+kzpzkn4URgqT/rJD8e8BfCDEm+McQ/7thxEQP/m+6QNjWG+w69dgia0oUpnwlAuxWw4fEDN/2m1+cPXFKnpiwSCzNfDANeeiHMfCpNOhPEO6N8SvrYbd1eTeVlWQ70EXd3bi9hEWmiwD5+hW9vuQK9dcJIeuObX8K9DJtuKZzGcP3YjdS7b0Vehr7ur2JRWEI9XUWrYHB07dNRaXJz3mlnRWi2pfOcwMDifMSW4YIkxqNScEAOrjkfVUahUyTI/uPoSfblrS9g/W6DSAvxi6plmViCrc8v78A3nQVwY89tJsbL35F3HxSJQnWERZqIOHF5COx1AX0Uiwt1VMVgcnEhPnsZj9MI6uBquv0048hqf1iAv78ayzHg+6qKJTwL7h5S2sxWPnu1pU7a0hArHM17uQYkjATsmimo0YLfLKGyZT89XUSJn0WlEIlJiMkRy1zw52BOr/612nlXN6Bt8yF4RpTxR4zDzOH/0xlMCxZaHiXNms/zGSsRI1jx5hpFDuvOU2MjrQ6WCjdTI9oZkKzobH556ZBtLHmtnNfs1iLMQFF7QOxLSG/AnNNBnWLr7g0ZDeL3Jph5pbHDoKQJ4OKN86g52qq95yp1Tqtp+8T+Uz3921Bww9vPoqnLWtCTKnn7fYU5Y1lJCvEZXZmscWBa89+aB/ngU1UZEtE+GYOtbT+Alb4CtAG07SNRsrph3nE6nPVp1Im9FWMH2rILxE0p/F5BTIGvU/EaCgrFwZtrS5fMYN7A9FxJ0F3PrxBjeJQHBptBCmHfy4NFKgtZVcyyu7RhSdJ2FDTarzn1GYkriny4mvvBrZtRlp6VqmeQblFvKwDa47pgfHKQfHGgXx/AQ/fv23Cmb/U5vMyafBejtkVmCy4edGyzM9Vfyi6FQpCKGuuN2uUu0znbGtTKcwjKb/3Xkz0BGv9HvkIVoGfIZN7q3mPkgKBOUVZsQzvXTCf9c3vJFYVMcvRvQSfSBX6aSGJ6h5be1+WZTWdKKpUsgWe7uljeNBSmmugvn0D+GKWecI9r25+fBdDkc5NBfi/b10Q+S+Zf5MfDjcKydbkX+mo8t/bqvQpQ1ZMBLNxZcAR//IpT64w0QYXipAzVne5GZriR6LL8lO1g8zOTjyOoP0wreDXeRUOcThFT6cQxw9nQTUMebbDUA8MqNHbJ5ZqqkAvypafm1M5qEop57jo+biSjuw+VWhp2U3F9aSJyOheHSf00WX7QW3L9zBgy6RP6El5lEPnWg37JqRAvaalizPsLCj8xmIXLMmGjPW32nLItm0bWCKLEqj3y8APTzj8DZq0xYC9jIznF+YBVIQvBYfgPfTijmq6h0RkeTTd3nJsk4Uu5JpcdJzcJ6wxZdT5iWE6M9GynoGbU3XCFvbSTiraKouRIwg91YZS+pzvDfJ3f0X2KQexPi+j0ai1fcnzancN8znqYf2tqwI9jQ4BlRc/QzJWStUv+t8JezPzJSC1UTVOH5JuBzfxyzgUx+eXkFJAWIhVbb4wJ7xVL9jbMrvr0ZLcvC6M8cN6axRptAC+fEjEjAyIFycQ2QuG7FazUM5U9kt/d2c8sTVvM+XdVsV3SZYS0p9s6TKwv8NbE+vn8axssurQM/OuZYd+VI8vVrcUKbjlk5w4bzchVnLxcHxMk98dUl/zTq06HcYc/sooBGexXe1MIUeD/RKlY10460/19nDH5gPVp0ltX3m3ld5EB7SNQC9Z1HDKtcvPHIZQm8QF6IOhNrLhpo/iAFGTIMqKSXE/AYG19wug1Jjq0JhWAcHnSmP+ooIABdDk8Lux8pI5gcxVzjvJ7KGllZLP+5hltS7wRuy6qQduXwOfwOsE7FUAlAC8TDdVyMRL6fEjmh7DuuA2Qy0wwq2XM/Eyx2qZlHHQoilL77DqUAKjHL+l8Y34MVneMgawv5gbpTmaGQMCUawWL1s3+WrFkJVZCunciqWbAeednpZWLh1hHuhEB09CD4KwHi1aFpbPnGO9YzCfNqr25TELPfG6KMt5hOPvCBIOanfx7fkvjMsbEv0UP4trKmkrAo/2MAL1g9/TL/KId721Od3w7nTMqUoTSVp0qUKi15E3ELPw6PRKGkzoAbjk0ZOGp6rEmAOP7bOC3W7TEs4WA86T3EU8DAJ8pSmls5hCOqzF1LmWMv02x6UCYZm8Vk5P9hktr1Pd/HnaefIdkXjzQRHKAPx6SKoTOA1G5pAjm1cViH2L6dRAmEb3vBh3i7kx2rCw/6zKQkj+k51oYh5IYyEaoI8wrdH7kPqlg79UzTSCzLZjnaOLofzGr49u6WW8KFKMwiGfsLmmvD9Kkgi3fGlCmVi8JqgkORDpQ5lFMJ/4x7zxtrlBRYfXCfsYllh3O/+5OeMqXl7mUQpqTnIg7sxTGoMb7xkIjhJXtWz2dmN+n8gUGlDWZZER6c8WyJUmmTHyQFZGJfDQXfq3vodKSD0yl7tmlU8qC2fgW9GWcD+vYq5ZUrd3qlYLA9ARhl4OGLXeR9zWYNVjKhFxfpTeCwB1M6PNUr+bmD8DOeS8qjJSQ0xgessfyec5Wwi3yxBeAC+3GSw95m8lDHT+lPcxqoNe6BNUscAANGHg6hJo+hWPY5yZbpVhcEDFatOTKVk7rVCg+dNCYs4eRo5x6310ibYmgtJLdpA205ok8du6LJQelz2K1XoCXXu2CsqrVBQ+tbHLSn1i8eKFEddywL78xIcny3hN78LSttLI9yK6P2YUP9XFZq55BbvlYyyYp/wFu5VnzxHcj30JjTja19+Pz81Pzg917Ksu4jCob1Nlun4KnvJSuh3udmkiMrIKIfQU86WPDN3v/WISfrVQnF6y5lXl84fprWHwezjbc/ueCXPrfYXJN373qizDNWjPfATD4OC84iAxmx8LZckPiYgcOu75XdOYu3xMejwTOawznhRSlDY73Q8lbeOU0x4xl32kYSRc72g6+DFlVz56B+r7KK88YaYH9KovgMri6daWadWEcb5f+Igj2kLGU26VABuPklZXEFQSF7fMfVePeCymQwOcX9DyqlAMjnMDhqPxgQ62xMwZfwEkO38BU3hhKZZHqiOL2kIKHxi8vAXqOw+82ulDECHmQxL7wWWZt1qtA0Gm3SqRQmKNlz3NQVRu6bxf13UCpssChh8nf5sJLnPlFFmBGxOC1tVHgnIDk8gtFmu/emkvqI6Gnp/YEYvTJIZPYeMteC+oo6T3jo6Y2UJnpBz/pM8zkXDbVanuDLroeY0+jWJeZ+/JbTYPok3tq9r/SgfReHrNe31wUzPz6+vo7mbyvvjU0RyEva/3JPtQqx28gFA6baqkDP2IfFrOulcgmNoe12wfmlB2tGxF9dv1zruwt3Sg2ESDND9yxtmXKYRJTfvuzNkssdXfnxk5yFxGaculQ8GEXAnBt8Tvxzg4C0zPo1HhWxo+8jVIyufdwSX6sqxVyPtf37cx/Fx9xXYiCkDjPRisH7z2EphuO61M66ZCXRjKjVsHb6k/jiAi4IIuxgaNR5+POZQkyhwXoPkBOHwhcQbpv4vZusv2KXl0RmSw7SyEN1MMe5rr4aBRbdYdeoWBKjPLwzgZTdMVtO3Ai5I3X/GHXXAdA8GaGYoZrVmU5MIEwKMQkocmzaN01+OYB+aadj1o+aQTYjZ78P0K2xuFizC25LJddYUkiT1NKbEYMoL4WJOW136fLXKGpgsPs5YjRjMrJ5vO75lYfXh/RlcVZKl+GqYoUAAjI+FjvRJUQkqgeBUBgw89wYO9JxVFoRm5CJUCfa7oqvXZcJ/Tz6nahPbh8lZ5sg7ALaPDzqGyvP3Hs5Ry/Nvu8F0u+9R5Si9RFKLA1I9fUO+9WwzjnZzs18V/ATb48Q3ruymxsRE6XXIr8m9cxWsFubxa7F895yrb0r6z0/MTy00jYlVzL7YcKhf7CwNeCcWbsfN8y2zgFms7Kb8dpXn+ElXnKS+XlYObkI21pbRq9Gl0+RCEwKw67XivvSe59mnv6w5uLa2U150vWKNATWoafiOxZTh9x2JvZGR03Sq1oW12ODkROcF5o0+Zasm4PZoJ7TwVLsYLhdKjzCgaGBRv8QxTvnZdOoS3Q5JE70d/rym5nz7SOOxb6IqAYIK1/yDuzk6aFcSe87MqpcokaWipEsY1ZyX2nU+Q+wmfar8aRl0+urK3PIIaC8rOpSEK99+FBr6C31M2yPOCH+g+pXCqJYqtPnvjc2au5feYgahWRnisQFMQs12MMs5dxB29Xoj2AJf7S8ZU18BF9Rzdk8PqxvJZSu3bt2WJw99a0HR/+GoS4ifjM7+SKxeAeBOeQzWg2DxpIO3AfdjY4Xs+9Zb3hCPrwuJtJcVirG2sC5StHpgkSSUoPZr1uPRtDcVjeuNdXJiRftCEvchd22pZwKqPF3jEeI0F9/7R+zAoD/AgPuMaMtFwONLvdQH80dp3Kpk2Fk2992CcVl3CF7SjQ9hA62lsmzwQd2pRdPW1BsguvTpeEOs9ydOSZ1uRtBR+GH41HFgn+ReQ7P1pE5oUdCVQPNOrL8t8z9PlUcvnR25wyR7f0Vod80FpsYiztbTNwzLpO27rHmt21iFb1yfi2z/XV2OX/VmHr4iQz5pyBVtfLyxe/SjwBFP8BYwgbGY8nJPMgYFl7BvI32mqanD+dpaywODg7X3xy3OE7nlNgwc1IDCnbv/YxEIV/fX/CM8IMPdUndgY65NJ9ph2oHTcVG0HdiruoWAu03IAJlHB9R6VzzKVYhgQRwQawlGx0xqto0nuEmkXlUAUAZPAxT4pYw+wSKxb0NZNKCVIIOCOlTYfO9jprY/My+gqzk1n6bOJwT/EFwwrQraGxhPcUHFLmm0VRI5QO5pwVajpcmlYdx+wGmlCKA5FOEntS1Q9GNCGnhfak35PSnZNDuNJBj2oA9qN9LuNSMUIDTguKQHNOpMYYpaTNJmkMdSGmFsVBJdxRkbpBgnHFFgLJNMLUgYEAggj2o3CmhCcmjFBcUm8UxC0hJpN9NLHtTsDZyfmFSpxgjuOtKcSMNvLegHWoz/nNIrEHIJBHcVncosQxGR1UD5icbT/ADro0OEVeWIGD/8ArrnInXcGYZI7c81vx3cDoNsqBsdM4xWkCZBcOUjPPXpis3JLBYzkt8oB6ZPWp7mYOzBWBCjANVPnH3MZ/wBWvHJJ6kUnqwSsi5ZxBhJLg7QPLXHQY6kVfQ5AI5AH41CNlvZbSQqqm0e5xUkADQqynrzkVaJZBfOpCKeVGXYdDgdqpaaoa535O4Dp9alvX3ySgMA3CDcOPeiyXbcRjOCylyoP4D8azlqXE0kjSNSEQLn0FYgwL0PjkSf1reI4rAc7bljzw+f1qY7lM3xkADvUVuxYSc/dcrWfLqkhjIEQUnuW6VSilmLlYmcse0fU1rzK5nystakg81iBkhsj8qqzEmCNjyRwTUzQOluRJGBkEgZz+dRbc2mNpGOxrPqWthr3U8zbS7HOBheM1dh0qVwC8qop7IMmoJBnT4JV6oxU/wAxW3nKqw+8QDx3q0r7kN9iKO0t4E+WIE+rckms6/QRzDAyAemetahbLAN8uOdo71naoq4GdpYgfLn0NEloEdyt9n/0mMFyobPOM4pl3by2k8blUxnKsvQke1SCQsitg5jIOT3omM9wu51coo44wBUdCnuRLcATNIflJyfl7E1YN1cXQEIJPsvU/X2qm8JaPzADtztz71YtHlt4m2kJuIJY9qaYyUwLbeV5yq5JJKCpJbl5dsIG0HhIk6n61WjbzpCqsFByWkfqakgcIdiDEhU7iOp/GgRKbZo3ia42+SWwUX+tapVQnyDgDjAwKxUuTMxjO0BjwD2x05rRtZi8Hln7yEA5PanHyEywUPfj6VVlUW8glBzuPOTTbjUlAKwYZu7HoP8AGqcUE95LvaTgfxt/QVTZKXcrXbI9yWii8sHtnr7+1XdOiV5ZJHGSuNo7Cnt5dsZEKLISMZ70glhtbomI/Kw+df8ACpW92U9rI0sdzQv3mP0qtBepPK6DAVecn0pP7QhV2Vsg55q7oizLdFUBqcfmsCPk7Y60JqaO+0rgZ60cyDlZeAqleaZHdyiQsUbGCQOtXgQehzS02riTsZK6HCOs0h+gAp50W3PV5T+I/wAK0sUYqeVD5mVrawhtGLRBskYOTmrNLRVLQTEopaKAEoopaAEopaSgAoyaKWgAB5pwIplFKw0yUMBTt4quzqqliQAOtU5NURRhBk571LRSbNTdUZuoRJsLgNVGbUf3QaM7Wzzn0rLeTe5bOcmok7FrUt3t3ItxIu87Q3aqBfCkk5z0pZXLsd3PqaZkNjPPtUXuOxoWt88VoI1GWB+XPp1NK2pSKD8o555qgrgMM4I9KR3Lkn2/KmpOwrGnb6iZbjYy4DEY9q0MVz9tkzR4yTuHSugzWkWyJWuL+FJmj60vHpVCOPyMUlIevtS5OAuePSsjUdG+1snNSebnqc/8BqMJhct36CniMqcDk4zQBZQgW5bGMnHFRb1B4DgjpzTnG21QZ560W8ZuJUjHQ9T3xQIc8xcAPJIQOgIp4Mm0qPOKjkjoPrS3dssMiQrncfX0qJbWTYXU/Lu2depp6hccDEWC7XYnoOtXbBh5vyggYPWswM2Sp5x3q7p1wzXIQgBVBwAKQzZHHNYU2PtD56bjmtvPFYk/+vk/3jSQM0bWOwZt0QUN0AY5P61mtBK146QNgqx5BwAM1FuweeBnOPWlWaW3ZijEcdR6Vd0TYt5u87blTgdHx1/GlkGUI9qrC6eZz5sjsfQnirIO9eDSY0QpIPsckZbncCB61ah1FI7dVMTM6jBO7ArLl+UnHY0+OTyzkqpPbIzinzWFa5c825u5f3YbnsgwB+NE9hLBGJGdAScHHJ/OtCzvkuv3fRgOcDAqveXyTM9tEpZ+mTwBTa0FrczlRdpLEsc+varcd7vgkjcbmICjHcdqpuAih3Y59BSEnYcfIPUdalOxTVyTKodnLv12joKjcmQ/O2cdB2FQnKtkfnTgxLD3pDEYlcc+9DO28MMgg9RQxVj9aUnzDuwB70CLcFzFDHjbvfP049KczS3Vy3loct1Uf1NUfMC8Jx71q6W/kW0kjgKm75j1Oapa6CehPb2CxHdOoduyj7o/xqy88MbbHYLxnGKgW+adXa2jzt5JY44rFmkaRzI5JJ96bkok2vuaVxJayxuUjO88g9OPWstnO7cTzTPMI6ZH40m8HqM+lQ3cpKxK5bG5CfcetMLkuVz0pRIEXjOabvH3u5pMYjFhk06OQo4boRyMimeZ83IyM9DU0kiSkHGAKFsBs6XOJYX+bLBskelWvtMO1m8xcA4PNc7FL5SMqEgN1prSfWrU9COU321C3VsbsjGcimnUoAMjca57f83GcU7eWXjtR7Rhyo6SC6inBKnp1zU9cvGWQZHBrU0+9J/cyc4+6aqM7icTUopcUVZIlFLRQAlFDAEZJwKWgBKKWoLqYwQlh16UXAbcXSW+M8nuPSqb6pmL5Fw3fNZskjMSSxJ96i34znPNYub6GiiiZpnLEljg+9NyBg9xzmoGPPtSk/KDipKHNKT3pUJ6ioSM9KkzgYHagB/mZ68mgDr3OOKi3c5oDmlYB5Oec80jMeOMU1jup5x5ae3WmgJ7ciOX95uBHIxxW5DNvyrlQ3bB7VhxvsYy7MKfXBNW7VGeRTNyDyeatOxLRsBSaUJT91JuFO7BJH//2VBLBwgNeAcW7kkAAD9LAABQSwMEFAAIAAgAc5goPgAAAAAAAAAAAAAAADAAAABlZjg4OGE1ODQ0YmQ3OGE5ZGU0YzJmMzMxNTRjYzNmY1xldWxlcmdlcmFkZS5naWbrDPBz5+WS4mJgYOD19HAJAtIKIMzBDCRdlnQdY2BgZgjwCXH9//8/UARIfsop/dLU9X3Bsh9rN/06fe7vq9d/3757Jaj4Skz1jbLRGzXTtyaO712D3nuGfgiK+xiX+Smj6FNB1deuSV/7pn2bvej7inW/Dh37ff7yn4eP/z59/ufO/f+/fv/7/v3du3d37949c+bM7t27V61aNXPmzI6OjvLy8rS0tNDQUBcXF2NjYyUlJUFBQYZRMAroDi50s+YCKcaSIL9gBodnN9KAbC5PF8eQiltXg2OzDxmI2Hre9tnWzrmLs+7sJb4v///PbLrblvxgck5G+Nq/J/JW6WZe7bPlZd6509PvnK25eSLfrNmd24/Vzv7v1PCfYcb3w24O13sORc2qkq5jd8hYMl0i71q0KcdrpoSEt58Du/5FOrw3tqx6mVbidvhx1LS6P4WnDmytDfocwNxza9GsvAurGY5cX1cmX3T5umlJ0a+c0ojs55sj2HW0l4fXa01LmhH07PNzS7Vj3JEWJROttzT8zRY8tDiPoUeTW+yi9hbh+ppwgwLxlf+MdMXtdpw9JWDkuqz9bIjpTs0moQV9p5e7Klos9665rsXAtvLLotuaTk+PZUxU9Ko3q1N3PWf6r/ty1I2zDfKHtnpm/hJLmAcKKk9XP5d1TglNAFBLBwixkWYg+gEAAFwEAABQSwMEFAAIAAgAc5goPgAAAAAAAAAAAAAAAC4AAABjYzk3NzUxNjI2YWUxOWJhZWRkZjZhODdlYmY0MTAwZlxmZXVlcmJhY2guZ2lm6wzwc+flkuJiYGDg9fRwCQLSCiDMwQwkXZZ0HWNgYGYI8Alx/f//P1AESDIyMkiICv388Z2VieHLx/f87Eya4rxmCiLG8iKZAU79lTmv7l1nZmTgZWXkYmFkZ2YU4mAW52aV5mVTEODQlxY0lhM2VxSzVJawUpF00ZF31pYPMNdKcDFLdDWPczGPdjKNd7VI8bTO8HNI87HPDHDOC3FvSAmb21x2fPPKbUtmn9m5/trRPQc2rLh5/tTLxw8kuFm1xPmM5UTMFcX9jNX8TDR8jNVjnUwLgt1Kwr2KInw6smM7cuKrEkObs+K6izNWT2qb11G3Zc7Ew2sXf331VJSTJcbO6Om1C1dOHNYX431y56Y4B/P8ylxhAf6vzx5+fXyPlZFBV4hbRUFeV1Pj6/1bU5MiHx3YJc7CqMDOfHPu1G9Xzn+7fd2Kl0NdXu7b2ROt5vo6igpK/HzvZkw2VlL8sWLJ913bVJmZSoQFCkQEDDk5tHl59jlaX4oMAQblbwaG2wwMpxkY+hkYKhgYYhgYfBgYTBgYDBgYNBgYFBkYJBgYRBgYBBgYWBkYWECxwMDEwJDCyPifhUUTSLKzKzEyyjEyFnNz/hMT+yclqc7G9ldDQw1I6mibcHKqsrP/NTf7Y235x83FmI/vs5vLH08PAz4+EwGB3xFhv2Oi7ifF/8rL+VWU/6ui7H99PTMT0//Tp01MTIyMjAwMDPT09NTV1eXl5RlGARhkNe1zBFKMJUF+wQwOz26kAeOD1dPFMaTiVvKXpAP8ERJlD6Z+Tzikt+/J/ySJy92c0gkpKS0GezbMTjh/5ABPObPYgqKT/45PVhcwMxPecc9rY0Ft6rGlDZFzvL0mNXYGyrYzhf2tt1dp3LKJocz8hWax+r/UU73V5+rEZnNy//+tyXV31+zo/SfCu2Llkxa/klVhfS3JN7OLo1vra8j+gP+nfzE8UVQT+cvDs3bX9rLcnbK6pz9cmSZ6uOUrD48sf18d66Z9ceWVP/+e7/2/Qm3FVUOT+7v5n64JSIp92P/KI/Sqf+Wk7w/vrI7lyZ6496TWugU//J8wHNoTzqNxL+Xq758xzY2fVZ0ObrdrYwvbwflLp7/337/EBGfOT3uer7q+QK3CYN+Pb9MfXlsy/wTXPwOD2uaohx8fTV7Gynw4pM2ocInG33MH/kiuSTj4f/H7KQ5OnTyifBysi0zn3LevamRaNfvh8lv/w2t4eOZvuv8n/RdD8Ia2hyv+VN9r1zqzyjf7r9z+mu9v/n2X//807rShQ6jLCxm/qs+ff4ovaNI7Fv1+/5+Q/wf+PmlseCC+8qabw/Kuyrh/okX/2e/zsqVGxOz58/fj+3y2us6otuxf0ZtZ5A084mvPHjihe6JfZna9vv6U9+krYuLjPzX/vT6x2EHw23uenrgMy+x/++fPvBzxbY7gjvNn9ObPetG5kEFwUhSTvb9RhdHDM1Pr9eXttgpU73NoYHFLSKl8cP4fw6Hb6z1lWnnrQKnE09XPZZ1TQhMAUEsHCPntn/pxBAAAVwUAAFBLAwQUAAgACABzmCg+AAAAAAAAAAAAAAAAEgAAAGdlb2dlYnJhX21hY3JvLnhtbO1dXXObyhm+7vkVDFfnTCu837vMROeMkomPM62TTJ306sx4EEISjYRUgVM7nf737rKLDJKQAIEseZoLaw2rNTzPu+/H7gN589vjfGZ9D1ZxuIj6NnSAbQWRvxiF0aRvPyTjnrB/+/WnN5NgMQmGK88aL1ZzL+nb2EG2PD73/NXC8uejj9486NvvH2bBahKsvFFgW8liMSs5fBPMln3793BoYevzQ/QtCSwvsq3QX0TX4Ux+IxgLITwqCBmOuPDcUUB8NMYYUuL7eOz/ETwP6UzCsW3F08W/P0Rf5OBvvVXfTlYPwfoCP0TLh8TyQN8e2JYH+/Zb+YH69jv7Kuvy6SHJ+vwjDGaB/w3qrum16+7Te082sGoMZYOohi8btG/P01NMNdQprhrqlOjbN/LD7du3aQ8IVEt1gVC1VB8oh75Tn3Lkr+pTDpz2leOmPeWwaT85aqxHEaqVnnNVy0/vQ4IXy9v2E0mllYSJwlF2eUimi5VqjbxEHZE95f3NgyixkqelPLJchFFiWzNvGMwUQr/+9Kc3Ck1rMfxn4CcGy+x8+suV6iNPv1vMFitLji7NZpL+HKY/vdly6smWNKe068x7ClbWd2+mzpojcrTbxSgoHPWiUFqXuv44CZZqAMlCvAyCkbFNfcWysZRDpjY69maxuSB/sViNYutRfc9ltvXUt5Hj2tYP/eW0T3qzd+EP83dxityVAeQANG9fAzRE9U2RIaI9aN69BmhSY3lSENVExl/M5140sqLU231ezJ4miyhFJNzneSQY217n3vgdP23Irl7akL5hKBvpHzZ/bgcl+g9noOeGTMELo+AueZoFVjIN/W9REMfynp/RudpPYQ6y1jksN7M4mKjf1lfht3Mzndpj3g8R6Bb+4dTCsANIamI910HQRWa0KvcU/CvSfWL1s2+H8+Us9MNkbVAzZeEfokTG9CCNBbG+uBx/34Jg+UUO+in6svKiWMV03SeDpTof3kXx0UMORikDPaichJrkyAFAXC4Bw4siABoXK+F39QzAjgAI5P7Rc+aiTU9v/Lzx8sbHN/PwHfp3SHFqBBRuWQHsyMV3Z897bub/Pr7cx18WIa/RyV8WA6/Ly9+GI13sFN28t+XYVYl/wH3naybV/XRB+dN4HAeJnh8kZacimdgh1Dg0hgt+jh9TJZWgOtyB6sGgWER1+CKoaqcPq8+QLEoIUgCVdQCqvwNUvx6o/ksW+PkSXa1apMsXrObKThGpT6tkupCplDf7m3RBG3iZtbpdc3x+aI4rj7ZGZX7fYezU4Kb+uz3HDbXj1iH0h1oLYcTlOftsyW83Zmaomdn2E/NDfmKDmQ5jaifMuNprQ7Oi2YPS8qkLz4gaP6totqk54G02qOmwAuiAmp7O9J9KSgHJFXMIcMlz8gM7Z2qdDG2QNM88m5ktBZq+1gkJX48ICO3ODOYIhDha5yZcBwjpywTleE2IMFRQN6sE6kWMO5OTl4SKwRac8aFQsZnlx11GC0Spxh6g5pkj0eEBu9WoAQ4vZowiiy7EzdiAgLU/MU5QFew2h7faGG53zK74UHzaNocOQ1Qb5oB0lY1RRT8JHcw2CwhtDoDna0OgvSYEDoOY5q3nwq1jHSK3FwXjQyFy2zo6jJJtWIfJJDGsaB3IgXBvFCUOBBhcpLMoC8dxls6aWFEwibs64fiuUThuzvO+gIwclwIXrUnUtMo4zTmmYj2hqWHVJRhsZbEtVnPvytLSaa20dNp9WqoL5ZSM06SlvHj4ZQuIQVnNPa1Vc0+7r7lb5Wm75qYO421tFzTk4m1ZlT2tVWVPu6+yW+Ziq8qWueoJyCgLENOsvJjuyChv6gSIm6MX8NrCWDiQCrMGjYjDERLH1mY7LPirxu1mCzUt6Ktuw7p/Kf+4pVSrTZUDcChmjLsMEgA4ASSLAwgghjFmnCPCAWd6c0aWaVAQVwDEKcWU7suzN2+3qrlf5dWJ6vdUdbmtIL0OHoLV0POnef3o+mDvr6sgjCtqSH3f5ZxChpgXQHfoBaPRmHmCB8MxgQCM/xhnw7atII2WJs//qHupbXsj4rrNpKO3mXT0NpOO3mjh6PtU7yVUA2np6Pt7bKSj11odBlULGenotT6LjUi0IB69OiNZaGro9ZccoHEUe4vMthSAqgjJAgA6J+FoM/CyxPsU0KFMciuzzRahO15Y2tTu9KZnj58CPGltzEhPOTm99jTzT8fKkfQ4LSR8r0uL1KVydmO5VS+wUiN76RGH0EvWvbRSyZ0Kfon2s+7IaCOwQwG8YOlXK+XbqQiQYBOz6OiQwoKyUeJB6DBKc/sNZ83Meetlsrqltm4sL0QyD+lULmvIBq3rh3y6kCK9mGqmDWi1ugjhqpGDgI2lQJ3Kia3DrcP8Yjq6xjDv1SeZTQzk0KMeImq2Ojepsa4xaejatTs7vW/f9uhPmcs3chjaXq7T+lZDnUXTiyKmR51s245ri0cOR+J8JGOl2wphDU7Ci+IkTT+f1hmp5EQojUznPJStYoeagskWBSdYwVbevXXJkXAYcynPMkk9AYjrMAyhFvAiOR3yyhaAWwyZN2UqArVSWANR1b358gpSPnhoPutnKDp369GqJg0EEIgiJgCWn5n3Z4Jw5AJGAHYJ7CA9uSmTd70//DhuEWv4clhD88x3VS2GUt64kBMln2OQU2Ph0q+4ebxBF2L1m2yxahtwVA9wdGLAD+j9c+ZLjBIOyqymAOhRdcy7cOXPSmW5ep8B7RanqR2Lvdj6iyj018ip7qWxpPqOWEk8TDF/Xr8tMABpPQqqbWKFkyD6Lq9vsYot6xGYxdsnoDm3fmRHHmE6OdQ5aA79gDm+5l6yCh+tQdZ/kPUaIOWt1NYbgARK0mWGpDLXATZ/YkDSkTmhBCKGCZDzDxF5oQOqtyWEizAjFCN5hsPdUTpeBn44Dv1mUXpSVlVc15t4161MvGYLCrzCon1BkegKAQHeqHsFcCgUgmdPrOkcChEHuJAdGdJLd/rLSofrejH9upWY3gh9aBYdREWfyB0sBH1G3+z0SfBl6pTlUUyGIpEjqJE+4EBiul0bXNcL7tetBPcjVJYVsygifRDiXJBC4sqki2IyPGnAVR2NcsU2ahSKAoX4BtomyBSA/lgH5o+NQG5r12hjq2XLU6erPpt+ulY4ryqS+H0RjYJZXiGRP6KFEXklRFVtw20u190SNQyyN9MMUukBUg2stwkH90SLGjwtadCvrGGqgbSowUu7CtUgWtTg3VMjavDumRE1rF9ncNWabuH2pPvH3QkTMDDvbdKNtpNEzSxa319uhv49DOIgWnmjOgni85earZuc7tnSasshJ0kQlVorbeeTQs13mgXi9c01S/w+76i2CuwWeB/U8czN5EHFRP8M3gDWI8SBBEFMGcIcAyNpgdQRlAtGMGeIuYDWrHuDx+VK2pW6vgwv5SHl4b798+PPg1+snoUd8BfrSbepA36xizhfHSLgYAZSUmwxTQHTKQg7otpNVp4fFLczi9jyndiCWtjCKtiiArZ/Ph7bQwXNy2MLT4Ut3oMtboLtoXLlXLFF7WNL9viERtiSs8d2t084EttKmrj96exmNNx8PaN372avZ/wPBP/VX/TuucmD78Wh6PkCr2osC7ewHqt1Xg7ovsDtHKWg00k2Mzl2j1FpnxwKhihnkOCzfm3RITJSQ70oPtSjwWZz2RAikIMEQVyW3Jww2Nbe8ovwwS+LjGxy9LLZwXlhcpCzfiD3EBnissjYnBguKc4Lds5cdBifs+i8fnkyykIzzkIzaRaaX5WuvdPX9nbzls3XHJnRZZHxusMyviwyXndYJpdFxisKy7tfYTPIgvJ2CFY7Onsj6za7tJxdcoaPl4Ds6RKzAyPkaBVfSLN5O+dNLt5BLqtLLrtEcjNuBXEERQJiThAWlF86tfmt3SKxNWm9JFLhxm6OeQ9Cb/O4eVRDEOHkOT/r+VyqFbjK/q+uX/8HUEsHCPNbpkicCwAA3WsAAFBLAwQUAAgACABzmCg+AAAAAAAAAAAAAAAADAAAAGdlb2dlYnJhLnhtbO1dW4/bxpJ+3vMrCC0QjONIZjevOvHkQLbHl9iOJx4nWQQBBhTZkuihSJmkbI0X+xrs/pDFvpyHs+eS85593/yH80u2L2xKvIgiNdQMe9ZjwKR47aqvqrqqurp5/w+ruSe9R2HkBv5xDwzknoR8O3Bcf3rcW8aTvtn7w1e/uz9FwRSNQ0uaBOHcio97ygD2yPGl+9Xv/ul+NAs+SJZHL/neRR+OexPLi1BPihYhspxohlCcOW4tV67nWuHlq/FbZMfR+gR7yDN/scRvicMlPmbPnRduxH/eIy+cBH4sSZH7EeFGQ3Ls/j3alvtoaXuu41o+eR9tG75Ikj64TjzD18oypnCG3OkMP0+VFfY4OwhC5+wyitFcWv2IwuC4B4fKwJBNhf9BvSddslOKqgwUQ8PU2ZaHG6AN4MaF+A9fufUUfR96f4biGPM4kqwVijih09B1Uk6QH8+iB4G3PrQIXD9+aC3iZUjxkZNDZ/EleRn+GRLCRv7UQ8kxgNk3Q/bFOFidMW4p7NFvLhf0Ftqe8fRh4AWhFGK6NUzYNNmO2ZZeQxqaXiXTa2R6RfIM8tD0PBhCegXdjtmWXuW5PmtaQjjgVAOZv8aNJHIAP5yIFeeNZ42Rd9zrSUvfjV/wH7FrX6wpJdd/s5yPsThvCkv6SNDSI+/fy0nZ/QsU+shjouRjYJfBMpLeWx6HjrbDQbY7xz/ZiYQhFgHrO9wAdtRB0xDxdjNdYOyiZ+VNcc0dvn+PN4K0IcJttWOs1JiemNBCdC6eBSHZc6yYHCHa4qE5wqoUU2mgbUn58tvPPfIy/IZl8h59AE0FmJoiG8AYaqbOmhNhVqBQmrvYgsjEgsytVdnFkjWOAm8ZozMb0+i/CGwrpmaHwbFWUfIM/ARFITuXWE9NsjNxV2itC5gU9yPmNWnXGmpqiAJqU3Ior6/Bp3NyDGQuydj+LGYWIQMk8mpdYtI2mU+f92oyiVBMGtmHtInQ3Dj7MnASjoG81MczLF4+iiIiAAnbueSHNlFRdqPCD/pYZCiO2DgtKH+BoWoKHEINDIcq3iGGaIEIa6j55s+UFrjt1EykIojlluFdQJ6akZRXL3vVvNyQ6SIz5dRsrJkpVzJzza6tRIPaNCbaEVFsFDmRILbzkd1Or2KGc83vPH/sYD63fEfyrTl+1UM3tLFqkBtd0jVJlkzYJFkAk5rSFyxjfu61iyLkh5bDnps8rcB3rKmunfJ1fdNWoTFyQnMlkOT9IarVONzNIv89bloQRpK0khP0LuXETnzkR1aYjX2GFUgOfQQbYGFpCN2VNOLXj/hVI4h3VGYxRkry2JHKAR9pXAhYe975rM0Rs+9YpGx3ggHI68YKuy0RcYk4M0fYLVphSTwiYEufS3YQHf32s9SXhvj3r3+6g/fIa76QkvOR62fP36Xn7/Sy+nZvhyKOdihiuVGDstoOyDlNyvypVK9AY70q4e054NxdHY0oKwknL9m+tgfX8AP30g2d8Y1sxmzTBud4L6btYBWowyqYYdXdq7MKdohV0CgVslYYp1QwTtmHcUr3GWe0wTi1Qjn3YpzaIcalytmYVVn/4DTwLqeBn3MQqGUjLgLVWwsmcmgpjA15nwHHEh4O1ZJ7LHozJDuQ3WPRm1Wyo1a7FYukOZyl6ZNrO6ON4dnW6YASdMB2dLa7qBGakl9pO6zzmyDnCsImp/3AMPNHRPkjUeJh9oTRIHbIezbufOG5thunMuYRN/mZH+M4FtG4sBieXiC0IFmBV/6b0PIjkulh12yEvbWxgWJh04cJONyf6Wtq+jQhAVDEAoArR3+LdqjgFimHKhY2ed3Q9W6rRrZrPkvYn+uaecdc7Iatc626dy0Cqm0HVO1IwL6Gk7s82OaVqhoADTqiPHndBlspAVtvCrYuItgK191cHK+Ijm2ShBsVkQUNga1wJ7uHK0w7TGWgadAAim6YpixrMjjpAy3BOgt2VTK6Y1i/DmIrzudbEzVWtYH8+a9/YsHRywLuD3aFRpvR6IMOxaJAG5iaYeqqYuhQH8qawlJsucOqURmowmrG0rHBcr6+ZBx9UODo//53NUuzw0b4anL/xrCRPDBMTRmaQFeUoaGqplKiRcmwTh01aj5c0+aAjOcFH16jiYdWlJdXkugHtST6YROJftglieZGKh/aDpW2ZfhBRoYfFmX4z41k+M87ZRh8kmEunXVk+FETGX7UJRnOm1+WWlXVAVAhUDQdKoYiD1W1bYl+mJHoR0WJ/ksjif7LJ6tcV6If1ZLokyYSfdIhiS4YY5aV3DWSt4cIP8qI8ElRhP/aSIT/+sko1xXhk1oi/LiJCD/ukAiXWd8So6y3LdAnGYF+XBTovzUS6L/tFGjtk0BzUa0j0E+aCPSTDgm0tlmolI3ZWxbhxxkRflIU4V8aifAvn2xyXRF+UkuEnzYR4acdEuES41uSvdDMtgX6SUagnxYF+u+NBPrvOwVa/X8o0E8C30Feeeq1mDB6xk58zSB5zqoXXrDahTGpatCOezbZ6sc9h2yN4x6p/Tcx6/BmeNybkifgJ83IFqQFDLCJcjzrkHIAszy3J+eCS61hvU4F+V93iXx47eQ/F4B8eDjyX3SJ/C3C3yr5+eGcsVDDOSDXeZLq+cvi4ST3DwfQwL91Q1NVBSpQ1k/6oNMjedVY2Yes5AJE3DBaGmi/WkXn1UK6hoEygKlDzdCBWoXFjZdHVGPhiIZFsXQLagMDaAY0DQ1qigmgLi4cSDA00mFprhqGkdEMKHDh1kQwLPKKoRhZvRAXialIfXtab8VrcIb1O4uOd9wzEXHgMGD3E/tWBvaqFFnF/2QDe1GqOGBsKfK/icrrKxT5188zFAf1v2EnXrE8wynLM3zL8gwuSzO8ZVmGC5Zk8FiSYc6SDH6SZFhkkwxKkyTDN12Ks7iEQ7VRuUWjwPJVhwg2roHe0y7Sqx+O3m87RO9aoFslON+LuSL1YtidljXsRivYd5CBLENW7nnJS0Lp3JVhdoifr00gQKeWx+atYD53ITMA1Fy5RZWH0XG3+0IwMIqpASD0rC5PMP4XkgFAB7dGGeaCgZHXBdjxWVzV3PdF6rMLGYDCFCuBws48EgsRkeBA9HW5Ugs6xvstIf9NzPW9lpC/WPX8mp04YyH/Gxbyf8dC/ncs5A9ZyB+xkD9mIf+YrqaAg36brcmAH+WwvXXgv3NRhc046XWX4qTcAKvK1iRTho1q1BuFiWddIj8/kKwenPw33SdfBYcj/7sukV8u/O2Sn+/03onU6fULZQRqaXWBxuql+6ZqDjRoAsVQoYJ52+l5o9U4hYI56dvWiDGTkW1FxcK+hkbgge1IMGR2lhnIlWm2jqMRC4bG1uVimKJAVb8tejI+6DJXn8oOGtWpVWHRvX5/60IvJmS+kJHLQojbzztiIpOmIcxsv97pFXdqpSRuYomra0lJFGexfs9O/MBSEj+ylMQDmlxQj3voPJnwMDlPZjxMz5MpDzO6Y2LIeHLibZqcuMgnJ3asSZWNz77vUHym5KyPySYGqc1Xda0g+IcOEVwYrD4AvT92n97mi89WrdPTrSWdt4j0FUku1P6K1an10zWpMP26ZgIVyIquykCTFVpZlyTcszNcBa5+nAjnmu9cglavXzjScV99Khw4t20N2plwCOxahBY76LdFPVzhwBFtFdoddW1i9e271oyFSrbjMASKYAtVbmJCc7tKGipWVBY7f1BcNOgh/0rEI/7FhxO6o+CLeRbB41mEOc8i+DyLsOBZhHc8ixCmWYQon0XYsdhxbinJTgVdqlE6iJkf5a9e86lR0PmoW/SXDGgflv4TEejPH26R/sfdor9c/lulv1BwLFZXWCh0IKsNXW4pgCBdpTrQVEM1FE02TV3VVSD2Ogpz4Zz6wnSJfIWDwNPFfeHQKGYgTDiApgoNALGe6KBqhLDjaCyEQ6MweyJf1SCwbrwTDo28agzV26IZoVidfGEyBdSzXYYmbgceiQlFmnoQfWGqLcmIii/+iJ2MKC7/+oQnI57yZMQznoz4micjYp6MGNMvU+qkMAqyZIRDd0wydglZMmJCd0gyYsr21skIo0ky4kmngjEtnZmuNVmvt1H4+bRTFKvG4Sl+1lGKjYNR/HWnKF5LdZsUF2qNxerk+tuqGS7TkgfMm/ySCwKPf4wP+vHW61l0QaseA+m4R24Lh0AxczAUunbBEQ6BkrUWoMgIIOEQyKsAkIWuUJhUAdC9brqYFlCFGgcv1q8Jyf7N78yKw/wtcb9xW+P+4lcynvO4/wWP+1/yuP8bHvfPaACvkeKxJO5/y+P+Cx73ezzun6dxv5+P+80mcf/zTkVI+UFYvfQ7BlqLg9AvukV/cbT5wPS/FIH+/PcdWqT/m27RXy7/rdJfrCMWqifcsthCaW0CZtItWmzBFc5l3/kdh6qxpI7772+FQ+M2lx9cCIfGri85qAJP5PeEQ2NX+YHAK1zMxerfi4s5mtkZjQL34L6YUHAkbt0qCqZYCQi0WoS4cZg5aQn1MoqwFcQnjntHq6OXd6S+hKNF+QsJ/3enl4147u2qx6YPu7LoUcLbiIXknE3eFu9om0cpjvSwXo99MMO+u1djH+wO+2Db7Mumv84S05bNfyXyyD4Ym8+BncWWP0WgOjuVN5n8pq2KqrdpNttivpJO1V8vjQ7l6pxtnpBrN5l1AYbVAO/4iGw5wBX9YrcB7q8R1rsOcJX1+g6/xi9aL/aqtLQkeWgFf8mXNfflr+W7c4vQiTmCFsf0w81StEDIYdYrZZ+0wI/EvMmwolL9thk/pVoJHrqh7aFRaJfn+RnTaDp/VNCGcTDFJyt1wQ58115Y4UZxCL1pP6+kKVZX8BHrxUEupuU9bloQRpK0khMQL2XeJ/EjK8zKPoMMJIc+gg3MsFCE7koa8etH/KoRJPlAqnbSSEkeO1LJ97jpnsZl4Yb0reBwjM7/NUT2LI7+jXsdFPAvpMuj0Z2mDsfGw2rbRSxxjstUDF/+Krn6OVEd17ewNEeXWPfm9d3ZXaLzajKJUEyjCfZZ4v6wSrDi0LJzX00vS5o01+siFqdL/yIeJTh89m4ZxF+O2KZX5HyMVmvGJ3d2l+kFtk7cFXLybI1ibHlOCd8YDzbkqQw/mKzdsdtiLucTFCLfRjmr+dpFEfJDyynYyvQMvhW7A9VW01/OUejaKafzN5NnY1KXfDgEagNdVwyZJpyHwID1zeKOoZR8S6zCu1OktgvKppyXycmT0FrMGja5RnSZHI0818EXzl0/0a65teL20xpHgbeM0ZkdIuS/CGzaOfPmf3CdeEZIpNeSm9gabJf8dip0/OpZELofAz/OimCtfiTvFlDTX9MtqI/dOI+dPFD0A2FHMpfTJJHZCL61NvYBM4TNsQV7QKtq5rVAix9e3+Wrj61dxPZQarndZF9BMdnIDUUP7oGeZsBW0FNuBj3n+tDbHiq2Yla1fcyqbqrdNqsFz2oaLn1nQpwkl+RcqXOROXa0uiMdS5b0uRS5/tEYb1fSXckm6TenzO/F99nsWaVv2E0y3B0v7Rhs4raabivcsIpUbr1GbnetHnMuZL2qHLdJXMrEDJb6VRm/a7SMInvmu3Fc7XIVANi4sba5uIKv3NjYtgFMtv3VIv8Gxwc8ET/GYswCiSScKJHoTDzBbj4MiypcjYY8Ko0h3OiF9Qb9S/7wBJskKcJWfJKqWYRjMzoulETfSiEIodU9QB8YQ7i5fiktICGFCpsB3240eF4fW9sjalkaQ9IgmX8zUns9iEBjoGwioqWIZOvQdkOiJJA4+6ChtIKG9I9//y/JkT6bxl9KKb/3TRZ3ABwFg6Poa3AMDo5sNtCXx0nvEU095NqzJe4pNtMiE9Zfsx8YOyvF7yfbCeKfSCf+05fZf7hHzx9i/+7UxLykTYdRx/op0ZvHe2gOhorOMVYNsDElUm2mjGoG4rv1Ml/sxtYU0Zb+8R//uVsP20alBvvBFluoDaCanbhLlns2ByZsyH5tX/Zr128Hu8N/snqVuhfPX7r+MsrwvF+P5+zGFkX+M08snm+R+eEAylu7mH0Dl2Q0tSR0wV3OetJxaQSzo7CgIoSps1ZSaQR57e7gFQbldkWX5eP9I4ZLfmhgA4DFecMB/0Wt4lCgXZnfNQZYgAxZeES242TbXm2vkq1clOVkXUQl95EGuVZ5KWfJDdcNjIPAQ9Zaj5hY51J0G6/aP0lXA8D9TObGoKTKzJlajewM2RfjYJXJvbEz1oI2m15N7vM8F2G7NpXmbiwhjGconZEeJLVzjXhb5MAh+PzrH1t1jYvchW1w98yNlyxf6c6lAmOkMSJjx7MY7WCxO7ema9Y8cD2Hmf+JizWKmUJHG9vWZGwAYChjfYh7QEtDYKjaYKLCoaP+dBriF4fnIe+iBm8XSW7N9R9Y9sU0DHDXVjHe6i/nY8QYTNLCajbChsmUJmOggo3YTobZIe/D1K2WY96warXUCdntFOsZB20Wx4vf36P9CjZhgw/uhTtHjmsNgnB6j/y69xhj9nsGhpQBo747rV+9YvPaXLU+TH01uSBSufCwPxxgwW0WkxgZ9qcOmERkmRqx+mw1BGKrvsMDJt+JMTUt/wUuHQyUBgx+5k+CDH9f4g7iqetNkOSgSPrB9S+QF0m//SxdWL4fxZKzlBwrkhgM/c/+GchfEjDG6AOaIn9AD5xEkksudZH09H9+mSHa40TSqRVF1hR3RJF09B6F+OCEmEaJ3uNY4RRhk+l55B2hPcPv9yVa0yKN7kgflxhv4jossV3Gr6kFOSXuiu7ar388WH/fuB6GTQky1I24B3JHAXtuxuYXOraKQEXp1quyWce1xqOaFFtWsqCtYks+tKym83Vql2RVMOj09jBIOwyHvr2FHILDNjn0+vZwaH8GZYP802QeVDbIf8UXJznli5N8yxcnITzMR/zJ5Kkhuyfg9yzOFXbPO7ogiUpWPt6RGtgyLWvY8rSsK/Q3FP1pss0N/19lJldlhiRoffXuq3CgrdHKks8kplMnoOArChLZv82IAV6ClCJmQFNkwN61PkO9W4Cl05NSHQOq2CoW3nLE+gUd67qG4W4dx6nhkj6L/J6iYIrGofXV/wFQSwcISJNmm8IUAAD33gAAUEsBAhQAFAAIAAgAc5goPg14BxbuSQAAP0sAADUAAAAAAAAAAAAAAAAAAAAAAGQ1YmNhZmI3MTE3M2I2OTEyNWE1ZTE5NGMxZjQyOWQ0XFByYXRlcl9yaWVzZW5yYWQuanBnUEsBAhQAFAAIAAgAc5goPrGRZiD6AQAAXAQAADAAAAAAAAAAAAAAAAAAUUoAAGVmODg4YTU4NDRiZDc4YTlkZTRjMmYzMzE1NGNjM2ZjXGV1bGVyZ2VyYWRlLmdpZlBLAQIUABQACAAIAHOYKD757Z/6cQQAAFcFAAAuAAAAAAAAAAAAAAAAAKlMAABjYzk3NzUxNjI2YWUxOWJhZWRkZjZhODdlYmY0MTAwZlxmZXVlcmJhY2guZ2lmUEsBAhQAFAAIAAgAc5goPvNbpkicCwAA3WsAABIAAAAAAAAAAAAAAAAAdlEAAGdlb2dlYnJhX21hY3JvLnhtbFBLAQIUABQACAAIAHOYKD5Ik2abwhQAAPfeAAAMAAAAAAAAAAAAAAAAAFJdAABnZW9nZWJyYS54bWxQSwUGAAAAAAUABQCXAQAATnIAAAAA" framePossible = "false" showResetIcon = "false" showAnimationButton = "true" enableRightClick = "false" errorDialogsActive = "true" enableLabelDrags = "false" showMenuBar = "false" showToolBar = "false" showToolBarHelp = "false" showAlgebraInput = "false" allowRescaling = "true" />


<br><br><br>
<br><br><br>
Zeile 120: Zeile 119:


Ein Ball hängt an einer Feder und schwingt nach einmaliger Auslenkung. Im Bild sind die Ruhelage und die größten Auslenkungen aus dieser zu sehen. Die Zeitabstände zwischen den einzelnen Fotos sind jeweils gleich groß.
Ein Ball hängt an einer Feder und schwingt nach einmaliger Auslenkung. Im Bild sind die Ruhelage und die größten Auslenkungen aus dieser zu sehen. Die Zeitabstände zwischen den einzelnen Fotos sind jeweils gleich groß.
# Bestimme die Amplitude <math>\ A</math>!
# Bestimme die Amplitude <math>A</math>!
# Wie groß ist die Schwingungsdauer <math>\ T</math>?
# Wie groß ist die Schwingungsdauer <math>T</math>?
# Berechne die Frequenz <math>\ f</math>!
# Berechne die Frequenz <math>f</math>!
# Berechne die Winkelgeschwindigkeit <math>\ \omega</math>!
# Berechne die Winkelgeschwindigkeit <math>\omega</math>!
# Gib die zugehörige Funktionsgleichung in der Form <math>s(t) = A \cdot \sin (\omega t) </math>an!
# Gib die zugehörige Funktionsgleichung in der Form <math>s(t) = A \cdot \sin (\omega t) </math>an!
:[[bild:FotoFederpendelZukunft_2b.png|700px]]
:[[bild:FotoFederpendelZukunft_2b.png|700px]]
Zeile 207: Zeile 206:


{{Lernpfad Trigonometrische Funktionen}}
{{Lernpfad Trigonometrische Funktionen}}


[[Kategorie:ZUM2Edutags]]
[[Kategorie:ZUM2Edutags]]

Version vom 24. November 2018, 16:24 Uhr


FAQ

Hier kannst du die Bedeutung der verwendeten Begriffe nachschlagen.


Lerne einige Anwendungen kennen!


Kompetenzen

  1. Auf diesen Seiten kannst du deine Kenntnisse über die Paramter a, b, c und d der allgemeinen Sinusfunktion anwenden.
  2. Du findest den Graphen bzw. den Funktionsterm einer passenden Sinusfunktion zu einem gegebenen Problem.
  3. Du gibst nach Modellierung des Problems den Funktionsterm an und zeichnest den Graphen.


Nun kannst du dein erworbenes Wissen anwenden. Wähle je nach Zeit und Interesse:

(Hefteintrag: Formuliere jeweils eine Überschrift und mache dir Notizen zu den Aufgaben!)


Riesenrad

Marie hat zwei Brieffreunde. Pablo wohnt in Madrid, Maike in Hamburg. In den Sommerferien trafen sie sich in Wien und gingen in den Prater. Dort bestaunten sie das Riesenrad. Maike fiel sofort ein, als sie das Riesenrad sah, dass sie im Mathematikunterricht die Sinusfunktion durch Abwickeln am Einheitskreis erhalten hatte.

Tipp:
1. Falls du nicht mehr weißt wie das "Abwickeln am Einheitskreis" funktioniert, kannst du es hier nochmals anschauen.
2. Informationen zum Riesenrad im Wiener Prater findest du hier.

Maike meinte nun, dass eine Gondel sicher auch eine Sinuslinie beschreibt. Marie und Pablo wollten dies natürlich erklärt haben. Unterstütze sie, indem du Ihnen mit dem folgenden GeoGebra-Applet bei der Lösungsfindung hilfst.

GeoGebra





Aufgabe 1

a) Verändere nun den Winkel mit dem Schieberegler.

b) Klicke an „Situation im Koordinatensystem betrachten“ – Drehe dabei das Riesenrad ganz langsam.

c) Bringe den Schieberegler für den Drehwinkel auf 0° und klicke „Modellierung mit einer Sinusfunktion“ an.

d) Erzeuge mit Hilfe der Schieberegler für a, b, c und d eine Sinuskurve, auf der die Punkte des Riesenrads liegen.

e) Lies die Parameterwerte für a, b, c und d ab. Notiere die Sinusfunktion.

Die Sinusfunktion schaut im GeoGebra-Applet etwa so aus: Ggb-riesenrad-lsg.jpg

  1. Die Parameterwerte sind: a = 20, b = 0,05, c = -1,56, d = 30
  2. Die Sinusfunktion lautet: x --> 20sin(0,05x - 1,56) + 30

Tageslängen

Nachdem Marie, Pablo und Maike im Prater Riesenrad gefahren sind, gingen sie ein Eis essen. Dabei beobachteten sie die Sonne, wie sie gen Westen immer tiefer stand und unterging. Maike bemerkte dabei, dass sie in Hamburg immer ganz lange Sommertage haben. Pablo meinte, dass die Tage in Madrid gar nicht so lang seien. Marie meint nur, dass heute in Wien ein toller Sommertag war. Allerdings beschäftige sie dieses Problem weiter und Marie bat ihre Freunde einmal über ein Jahr hin zu beobachten wie lang die Tage in Hamburg und Madrid seien. Regelmäßig zum Monatsersten notierten sie die Sonnenaufgangs- und Sonnenuntergangszeiten und schrieben Marie die Tageslängen.

Marie erstellt daraufhin folgende Tabelle:

Tageslaengen.jpg

Dabei bedeutet der Eintrag 9:21, dass der Tag zwischen Sonnenaufgang und Sonnenuntergang 9 Stunden und 21 Minuten lang ist.

Sie macht dazu dieses Diagramm:

Tageslaengen-diagramm.jpg

Um eine Idee zu bekommen, auf welcher Linie, die dazwischenliegenden Tage liegen könnten, verbindet sie die Punkte


Tageslaengen-diagramm-sinus.jpg

und stellt fest, dass diese Punkte auf einer Sinuslinie liegen.

Nun möchte sie natürlich Terme für diese Sinuskurven der Tageslängen in Madrid und Hamburg angeben und ihren Freunde mitteilen.


Aufgabe 2

Hilf Marie dabei und finde die Werte der Parameter a, b, c und d für die allgemeine Sinusfunktionen.

Gib die Funktionsterme an!

Amplitude: a =


Mittelwert: d = min + a
Periodendauer: T = 365
Verschiebung:80 Die Periode beginnt am 21. März (Tag- und Nachtgleiche), nicht am 1. Januar!

Tageslänge Hamburg:

a: 4:41,5 ergibt als Zahlenwert 4,69
d: 12:15,5 ergibt als Zahlenwert 12,26
Tageslänge(t) =

Tageslänge Madrid:

a: 2:50 ergibt als Zahlenwert 2,83
d: 12:11 ergibt als Zahlenwert 12,18

Tageslänge(t) =

Schwingungen

Es gibt viele periodische Vorgänge, also Vorgänge, die sich nach einer bestimmten Zeit wiederholen. Zeichnet man deren zeitlichen Verlauf auf, so erhält man einen sinusförmigen Graphen.


Aufgabe 3 - Das Federpedel


Ein Ball hängt an einer Feder und schwingt nach einmaliger Auslenkung. Im Bild sind die Ruhelage und die größten Auslenkungen aus dieser zu sehen. Die Zeitabstände zwischen den einzelnen Fotos sind jeweils gleich groß.

  1. Bestimme die Amplitude !
  2. Wie groß ist die Schwingungsdauer ?
  3. Berechne die Frequenz !
  4. Berechne die Winkelgeschwindigkeit !
  5. Gib die zugehörige Funktionsgleichung in der Form an!
FotoFederpendelZukunft 2b.png

1.

2.

3.

4. oder

5.


Aufgabe 3b - Das Federpendel-Vokabelheft
Du hast doch sicher ein Vokabelheft um für eine Fremdsprache die Vokabeln besser lernen zu können. Nun sollst du die "Vokabeln" für das Federpendel aus Aufgabe P1 notieren. Zeichne dazu einen senkrechten Strich in die Mitte deines Heftes! Auf die linke Seite schreibst du untereinander die allgemeine Sinusfunktion, ihre Parameter und x! Auf der rechten Seite notierst du die jeweilige "Übersetzung" für das Federpendel!


Schaukeln

Aufgabe 4 - Das Fadenpendel


  1. Beschreibe das Experiment und verwende dabei die passenden mathematischen und physikalischen Fachbegriffe!
  2. Betrachte den Graphen und überlege dir, inwiefern er nur fast der Graph einer Sinusfunktion ist!
  3. Diskutiere was an dem Exerperiment "schief" gelaufen sein könnte!

Oszilloskop

Aufgabe 5 - Das Oszilloskop
Oszilloskop.jpg

Ein Oszilloskop (umgangssprachlich "Oszi") ist ein elektronisches Messgerät mit dessen Hilfe u.a. der Verlauf der Spannung zeitlich dargestellt werden kann. Auf einem Oszilloskop sieht man dieses Bild. Dabei ist die x-Ablenkung auf 0,1ms/div (Millisekunden pro Teilung) und die y-Ablenkung auf 1V/div (Volt pro Teilung) eingestellt.

  1. Gib die Spitzenspannung (Amplitude) an!
  2. Wie groß ist die Schwingungsdauer?
  3. Bestimme die Frequenz!

1. Die Spitzenspannung (Amplitude) beträgt ungefähr 2,3V.

2. Die Schwinungsdauer beträgt in etwa .

3. Es gibt mehrere Möglichkeiten die Frequenz zu bestimmen. So errechnet man z.B. aus der Schwingungsdauer, dass gilt.


Möchtest Du genaueres über das Oszilloskop wissen? Dann kannst Du Dich hier freiwillig informieren.


Experiment Bleistiftmine

Aufgabe
Du hast doch bestimmt einen Zirkel, oder? Genauer gesagt benötigst du nicht den Zirkel, sondern nur die Bleistiftmine für dieses Experiment. Die Mine sollte schräg angefeilt sein. Nimm die Mine aus dem Zirkel und lege sie auf ein Blatt Papier. Wenn du die Mine nun mit einem leichten Druck über das Papier rollst und darauf achtest, dass du eine gerade Richtung beibehältst, dann kannst du den Graphen einer Sinusfunktion erkennen. Diesen kannst du dann gerne noch mit einem Stift nachfahren.