Einführung in die Integralrechnung: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Karl Kirst
K (Mathematik/Lernpfad/Einführung in die Integralrechnung wurde nach Pentagramm/Einführung in die Integralrechnung verschoben: Unterseite)
Main>Karl Kirst
K (-kat; linkfix)
Zeile 1: Zeile 1:
----
----


{{Babel-1|Pentagramm}}
{{Babel-1|M-digital}}
__NOTOC__
__NOTOC__
In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/index.htm Einführung in die Integralrechnung] der österreichischen Arbeitsgruppe Medienvielfalt entnommen, die aus einer Kooperation von [http://www.mathe-online.at/ mathe-online] und [http://www.geogebra.at GeoGebra] entstanden ist.
In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad [http://www.geogebra.at/medienvielfalt/materialien/int_einfuehrung/lernpfad/index.htm Einführung in die Integralrechnung] der österreichischen Arbeitsgruppe Medienvielfalt entnommen, die aus einer Kooperation von [http://www.mathe-online.at/ mathe-online] und [http://www.geogebra.at GeoGebra] entstanden ist.
Zeile 39: Zeile 39:


  Maria Eirich und Andrea Schellmann,  14.09.2006
  Maria Eirich und Andrea Schellmann,  14.09.2006
[[Kategorie:Mathematik]]

Version vom 29. Januar 2007, 22:25 Uhr


Vorlage:Babel-1

In diesem Lernpfad können die Schüler die grundlegenden Zusammenhänge der Integralrechnung anhand vieler interaktiver Übungen entdecken. Einige Übungen sind dem gleichnamigen Lernpfad Einführung in die Integralrechnung der österreichischen Arbeitsgruppe Medienvielfalt entnommen, die aus einer Kooperation von mathe-online und GeoGebra entstanden ist.


1. Das Flächenproblem

2. Unter- und Obersumme

Integral1.png

3. Negative Fläche?

4. Integralfunktion

  • Bearbeite die Punkte 1 bis 6 des dynamischen Arbeitsblatts zur Integralfunktion. Halte die Ergebnisse in deinem Heft fest.
  • Überlege: Welche Funktionen der Kurvenschar sind keine Integralfunktionen?
  • Bearbeite nun als Zusammmenfassung das Arbeitsblatt 4.

5. Aufgaben

6. Hauptsatz der Integralrechnung

Maria Eirich und Andrea Schellmann,  14.09.2006