Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen
Main>Peter Hofbauer Keine Bearbeitungszusammenfassung |
Main>Peter Hofbauer Keine Bearbeitungszusammenfassung |
||
Zeile 39: | Zeile 39: | ||
:{{Lösung versteckt| | :{{Lösung versteckt| | ||
:Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion <math>g(x)=\sqrt[n]{x}</math> für <math>n\geq2</math> nur auf IR<sup>+</sup><sub>o</sub> definiert, das heißt ihr Definitionsbereich <math>M = \mathbb{R}^+ \cup \{0\}.</math><br /> | :Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion <math>g(x)=\sqrt[n]{x}</math> für <math>n\geq2</math> nur auf IR<sup>+</sup><sub>o</sub> definiert, das heißt ihr Definitionsbereich <math>M = \mathbb{R}^+ \cup \{0\}.</math><br /> | ||
:Aufgrund des Zusammenhangs <math>f(x) = x^{-\frac 1 n}= \textstyle \frac{1}{x^{\frac 1 n}} = \textstyle \frac{1}{\sqrt[n]{x}} = \textstyle \frac{1}{g(x)}</math> überträgt sich der Definitionsbereich der Funktion ''g'' grundsätzlich auf die Funktion ''f''. Einschränken muss man den Definitionsbereich von ''f'' allerdings noch um jene Werte, bei denen g(x)<math>=</math>0 gilt, also um x<math>=</math>0. Damit ergibt sich für den Definitionsbereich | :Aufgrund des Zusammenhangs <math>f(x) = x^{-\frac 1 n}= \textstyle \frac{1}{x^{\frac 1 n}} = \textstyle \frac{1}{\sqrt[n]{x}} = \textstyle \frac{1}{g(x)}</math> überträgt sich der Definitionsbereich der Funktion ''g'' grundsätzlich auf die Funktion ''f''. Einschränken muss man den Definitionsbereich von ''f'' allerdings noch um jene Werte, bei denen g(x)<math>=</math>0 gilt, also um x<math>=</math>0. Damit ergibt sich für den Definitionsbereich der Funktion ''f'': D<math>=</math>IR<sup>+</sup>}} | ||
}} | }} | ||
|} | |} |
Version vom 17. Januar 2011, 19:44 Uhr
Die Graphen der Funktionen mit f(x) = x-1/n, n ∈ IN*
Vergleich mit Funktionen aus Stufe 3
Die Datei [INVALID] wurde nicht gefunden.
Exponenten, Brüche und Potenzgesetze
Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:
- Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
- für
Auf unsere Situation angewandt ergibt sich:
Vorlage:Arbeiten |
Potenzfunktionen und ihre Umkehrfunktionen
Beispiel I:
Es sei g eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von . ergibt sich aus durch Auflösen nach . Es ist: Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3. |
Die Datei [INVALID] wurde nicht gefunden. |
---|---|
Beispiel II:
Es sei f eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1. Auflösen nach x ergibt: |
Die Datei [INVALID] wurde nicht gefunden. |
Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!
Vergleich mit Potenzfunktionen der Stufe 1
Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.
Zusammenfassung
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit
Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit .
*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip
(* Bearbeitung freiwillig, Ergänzung)
Die Datei [INVALID] wurde nicht gefunden.
*Zum Weiterdenken: Mit Funktionen malen
(freiwillig)
Die Datei [INVALID] wurde nicht gefunden. Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form mit zusammengesetzt.
|
Und nun gehts zum Abschlusstest |