Potenzfunktionen - 4. Stufe: Unterschied zwischen den Versionen

Aus ZUM-Unterrichten
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Main>Peter Hofbauer
Keine Bearbeitungszusammenfassung
Zeile 39: Zeile 39:
:{{Lösung versteckt|
:{{Lösung versteckt|
:Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion <math>g(x)=\sqrt[n]{x}</math> für <math>n\geq2</math> nur auf IR<sup>+</sup><sub>o</sub> definiert, das heißt ihr Definitionsbereich <math>M = \mathbb{R}^+ \cup \{0\}.</math><br />
:Nach Stufe 3 dieses Kurses ist eine Wurzelfunktion <math>g(x)=\sqrt[n]{x}</math> für <math>n\geq2</math> nur auf IR<sup>+</sup><sub>o</sub> definiert, das heißt ihr Definitionsbereich <math>M = \mathbb{R}^+ \cup \{0\}.</math><br />
:Aufgrund des Zusammenhangs <math>f(x) = x^{-\frac 1 n}= \textstyle \frac{1}{x^{\frac 1 n}} = \textstyle \frac{1}{\sqrt[n]{x}} = \textstyle \frac{1}{g(x)}</math> überträgt sich der Definitionsbereich der Funktion ''g'' grundsätzlich auf die Funktion ''f''. Einschränken muss man den Definitionsbereich von ''f'' allerdings noch um jene Werte, bei denen g(x)<math>=</math>0 gilt, also um x<math>=</math>0. Damit ergibt sich für den Definitionsbereich von ''f'': D<math>=</math>IR<sup>+</sup>}}
:Aufgrund des Zusammenhangs <math>f(x) = x^{-\frac 1 n}= \textstyle \frac{1}{x^{\frac 1 n}} = \textstyle \frac{1}{\sqrt[n]{x}} = \textstyle \frac{1}{g(x)}</math> überträgt sich der Definitionsbereich der Funktion ''g'' grundsätzlich auf die Funktion ''f''. Einschränken muss man den Definitionsbereich von ''f'' allerdings noch um jene Werte, bei denen g(x)<math>=</math>0 gilt, also um x<math>=</math>0. Damit ergibt sich für den Definitionsbereich der Funktion ''f'': D<math>=</math>IR<sup>+</sup>}}
}}
}}
|}
|}

Version vom 17. Januar 2011, 19:44 Uhr

Vorlage:Potenzfunktionen


Die Graphen der Funktionen mit f(x) = x-1/n, n IN*

Vergleich mit Funktionen aus Stufe 3

Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

Exponenten, Brüche und Potenzgesetze

Im vorliegenden Fall betrachten wir negative Stammbrüche als Exponenten. Denke dabei insbesondere an folgenden Zusammenhang:

Für eine reelle Zahl a und eine natürliche Zahl n0 wird definiert:
für


Auf unsere Situation angewandt ergibt sich:

Vorlage:Arbeiten

Potenzfunktionen und ihre Umkehrfunktionen

Beispiel I:

Es sei g eine Potenzfunktion, definiert durch . Gesucht ist die Umkehrfunktion von .

ergibt sich aus durch Auflösen nach . Es ist:

Vertauschen von x und y ergibt schließlich die gesuchte Funktion: f(x)x3.

Die Datei [INVALID] wurde nicht gefunden.
Beispiel II:

Es sei f eine Potenzfunktion, nun definiert durch mit Definitionsbereich ID = IR+. Gesucht ist wieder ihre Umkehrfunktion f-1.

Auflösen nach x ergibt:

Die Datei [INVALID] wurde nicht gefunden.

Hinweis: Man beachte besonders hier die unterschiedliche Bedeutung von f-1 und f(x)x-1!

Vergleich mit Potenzfunktionen der Stufe 1

Im Zusammenhang mit den Umkehrfunktionen dieser Art kann es sinnvoll sein, sich die Potenzfunktionen der Stufe 1 noch einmal vor Augen zu führen. Hier kannst Du direkt zur Stufe 1 springen.

Zusammenfassung

Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit

Die Umkehrfunktionen von Potenzfunktionen mit sind Potenzfunktionen mit .

Vorlage:Arbeiten

*Zusammenfassung: Was bewirken Parameter in Potenzfunktionen? - Merkregel "5 S"-Prinzip

(* Bearbeitung freiwillig, Ergänzung)


Die Datei [INVALID] wurde nicht gefunden.

Vorlage:Arbeiten

*Zum Weiterdenken: Mit Funktionen malen

(freiwillig)

Die Datei [INVALID] wurde nicht gefunden.

Das obenstehende Bild ist vollständig aus Potenzfunktionen der Form

mit zusammengesetzt.

Vorlage:Arbeiten

Das erste Blatt setzt sich aus drei Potenzfuntktionen zusammen, die nur auf bestimmten Intervallen definiert sind.
Wie müssen die Parameter verändert werden, wenn sie das Blatt links unten bilden sollen?
Wie kann man die Größe der Blätter beeinflussen?

Maehnrot.jpg Und nun gehts zum Abschlusstest

Datei:Pfeil.gif   Hier geht es weiter.